Returns the absolute value or vector length of x.
X = (x,y,z) abs(X)
┌ ┐1/2 │ 2 2 2│ │x + y + z │ │ │ └ ┘
Returns the adjunct of matrix m. Adjunct is equal to determinant times inverse.
A = ((a,b),(c,d)) adj(A) == det(A) inv(A)
1
Returns 1 if all arguments are true (nonzero). Returns 0 otherwise.
and(1=1,2=2)
1
Returns the arc cosine of x.
arccos(1/2)
1 ╶─╴ π 3
Returns the arc hyperbolic cosine of x.
Returns the arc sine of x.
arcsin(1/2)
1 ╶─╴ π 6
Returns the arc hyperbolic sine of x.
Returns the arc tangent of y over x. If x is omitted then x = 1 is used.
arctan(1,0)
1 ╶─╴ π 2
Returns the arc hyperbolic tangent of x.
Returns the angle of complex z.
arg(2 - 3i)
-arctan(3,2)
The result of evaluating a symbol can differ from the symbol's binding. For example, the result may be expanded. The binding function returns the actual binding of a symbol.
p = quote((x + 1)^2) p
2 p = x + 2 x + 1
binding(p)
2 (x + 1)
Returns the smallest integer greater than or equal to x.
ceiling(1/2)
1
If x is true (nonzero) then continue in a script, else stop. Expression x can include the relational operators =, ==, <, <=, >, >=. Use the not function to test for inequality.
A = exp(i pi) B = -1 check(A == B) -- stop here if A not equal to B
Returns the binomial coefficient n choose k.
choose(52,5) -- number of poker hands
2598960
Clears all symbol definitions.
Returns complex z in polar form with base of negative 1 instead of e.
clock(2 - 3i)
arctan(3,2) -╶───────────╴ 1/2 π 13 (−1)
Returns the cofactor of matrix m for row i and column j.
A = ((a,b),(c,d)) cofactor(A,1,2) == adj(A)[2,1]
1
Returns the complex conjugate of z.
conj(2 - 3i)
2 + 3 i
Returns tensor a summed over indices i and j. If i and j are omitted then 1 and 2 are used. The expression contract(m) computes the trace of matrix m.
A = ((a,b),(c,d)) contract(A)
a + d
Returns the cosine of x.
cos(pi/4)
1 ╶────╴ 1/2 2
Returns the hyperbolic cosine of x.
expform(cosh(x))
1 1 ╶─╴ exp(−x) + ╶─╴ exp(x) 2 2
Returns the cross product of vectors u and v.
Returns the curl of vector v with respect to symbols x, y, and z.
Returns the derivative of f with respect to x and any additional arguments.
d(sin(x),x)
cos(x)Multiderivatives are computed by extending the argument list.
d(sin(x),x,x)
−sin(x)A numeric argument n computes the nth derivative with respect to the previous symbol.
d(sin(x y),x,2,y,2)
2 2 x y sin(x y) − 4 x y cos(x y) − 2 sin(x y)
Argument f can be a tensor of any rank. Argument x can be a vector. When x is a vector the result is the gradient of f.
F = (f(),g(),h()) X = (x,y,z) d(F,X)
┌ ┐ │ d(f(),x) d(f(),y) d(f(),z) │ │ │ │ d(g(),x) d(g(),y) d(g(),z) │ │ │ │ d(h(),x) d(h(),y) d(h(),z) │ └ ┘
Symbol d can be used as a variable name. Doing so does not conflict with function d.
Symbol d can be redefined as a different function. The function derivative, a synonym for d, can be used to obtain a partial derivative.
Returns the definite integral of f with respect to x evaluated from a to b. The argument list can be extended for multiple integrals as shown in the following example.
f = (1 + cos(theta)^2) sin(theta) defint(f, theta, 0, pi, phi, 0, 2 pi) -- integrate over theta then over phi
16 ╶──╴ π 3
Returns the denominator of expression x.
denominator(a/b)
b
Returns the determinant of matrix m.
A = ((a,b),(c,d)) det(A)
a d - b c
Returns the dimension of the nth index of tensor a. Index numbering starts with 1.
A = ((1,2),(3,4),(5,6)) dim(A,1)
3
Returns the divergence of vector v with respect to symbols x, y, and z.
Evaluates each argument from left to right. Returns the result of the final argument.
do(A=1,B=2,A+B)
3
Returns the dot product of vectors, matrices, and tensors. Also known as the matrix product. Arguments are evaluated from right to left. The following example solves for X in AX = B.
A = ((1,2),(3,4)) B = (5,6) X = dot(inv(A),B) X
┌ ┐ │ −4 │ │ │ X = │ 9 │ │ ╶─╴ │ │ 2 │ └ ┘
Draws a graph of f(x). Drawing ranges can be set with xrange and yrange.
xrange = (0,1) yrange = (0,1) draw(x^2,x)
Returns eigenvectors for matrix m. Matrix m is required to be numerical, real, and symmetric. The return value is a matrix with each column an eigenvector. Eigenvalues are obtained as shown.
A = ((1,2),(3,4)) A = A + transpose(A) -- symmetrize Q = eigenvec(A) D = dot(transpose(Q),A,Q) -- eigenvalues are on the diagonal of D dot(Q,D,transpose(Q))
┌ ┐ │ 2 5 │ A = │ │ │ 5 8 │ └ ┘
Returns f evaluated with x replaced by a, y replaced by b, etc. All arguments can be expressions.
f = sqrt(x^2 + y^2) eval(f,x,3,y,4)
5
In the following example, eval is used to replace x with cos(theta).
-- associated legendre of cos theta P(l,m,x) = test(m < 0, (-1)^m (l + m)! / (l - m)! P(l,-m), 1 / (2^l l!) sin(theta)^m * eval(d((x^2 - 1)^l, x, l + m), x, cos(theta))) P(2,-1)
1 −╶─╴ cos(θ) sin(θ) 2
Returns the exponential of x.
exp(i pi)
-1
Returns the cosine of z in exponential form.
expcos(z)
1 1 ╶─╴ exp(i z) + ╶─╴ exp(−i z) 2 2
Returns the hyperbolic cosine of z in exponential form.
expcosh(z)
1 1 ╶─╴ exp(−z) + ╶─╴ exp(z) 2 2
Returns expression x with trigonometric and hyperbolic functions converted to exponentials.
expform(cos(x) + i sin(x))
exp(i x)
Returns the sine of z in exponential form.
expsin(z)
1 1 −╶─╴ i exp(i z) + ╶─╴ i exp(−i z) 2 2
Returns the hyperbolic sine of z in exponential form.
expsinh(z)
1 1 −╶─╴ exp(−z) + ╶─╴ exp(z) 2 2
Returns the tangent of z in exponential form.
exptan(z)
i i exp(2 i z) ╶──────────────╴ − ╶──────────────╴ exp(2 i z) + 1 exp(2 i z) + 1
Returns the hyperbolic tangent of z in exponential form.
exptanh(z)
1 exp(2 z) −╶────────────╴ + ╶────────────╴ exp(2 z) + 1 exp(2 z) + 1
Returns the factorial of n. The expression n! can also be used.
20!
2432902008176640000
Returns expression x with rational numbers and integers converted to floating point values. The symbol pi and the natural number are also converted.
float(212^17)
39 3.52947 10
Returns the largest integer less than or equal to x.
floor(1/2)
0
For i equals j through k evaluate a, b, etc.
for(k,1,3,A=k,print(A))
A = 1 A = 2 A = 3
Note: The original value of i is restored after for completes. If symbol i is used for index variable i then the imaginary unit is overridden in the scope of for.
Returns the gradient d(f,(x,y,z)).
grad(f())
┌ ┐ │ d(f(),x) │ │ │ │ d(f(),y) │ │ │ │ d(f(),z) │ └ ┘
Returns the Hadamard (element-wise) product. The arguments are required to have the same dimensions. The Hadamard product is also accomplished by simply multiplying the arguments.
A = ((A11,A12),(A21,A22)) B = ((B11,B12),(B21,B22)) A B
┌ ┐ │ A B A B │ │ 11 11 12 12 │ │ │ │ A B A B │ │ 21 21 22 22 │ └ ┘
Symbol i is initialized to the imaginary unit (−1)1/2.
exp(i pi)
-1
Note: It is OK to clear or redefine i and use the symbol for something else.
Returns the imaginary part of complex z.
imag(2 - 3i)
-3
Converts expression x to a string and returns the result.
p = (x + 1)^2 infixform(p)
x^2 + 2 x + 1
Returns the inner product of vectors, matrices, and tensors. Also known as the matrix product. Arguments are evaluated from right to left.
A = ((a,b),(c,d)) B = (x,y) inner(A,B)
┌ ┐ │ a x + b y │ │ │ │ c x + d y │ └ ┘
Note: inner and dot are the same function.
Returns the integral of f with respect to x.
integral(x^2,x)
1 3 ╶─╴ x 3
Returns the inverse of matrix m.
A = ((1,2),(3,4)) inv(A)
┌ ┐ │ −2 1 │ │ │ │ 3 1 │ │ ╶─╴ −╶─╴ │ │ 2 2 │ └ ┘
Set j=sqrt(-1) to use j for the imaginary unit instead of i.
j = sqrt(-1) 1/sqrt(-1)
-j
Returns the Kronecker product of vectors and matrices.
A = ((1,2),(3,4)) B = ((a,b),(c,d)) kronecker(A,B)
┌ ┐ │ a b 2 a 2 b │ │ │ │ c d 2 c 2 d │ │ │ │ 3 a 3 b 4 a 4 b │ │ │ │ 3 c 3 d 4 c 4 d │ └ ┘
The result of the previous calculation is stored in last.
212^17
3529471145760275132301897342055866171392
last^(1/17)
212
Note: Symbol last is an implied argument when a function has no argument list.
212^17
3529471145760275132301897342055866171392
float
39 3.52947 10
Returns the natural logarithm of x.
log(x^y)
y log(x)
Returns the magnitude of complex z.
mag(x + i y)
┌ ┐1/2 │ 2 2│ │x + y │ │ │ └ ┘
Returns the minor of matrix m for row i and column j.
A = ((1,2,3),(4,5,6),(7,8,9)) minor(A,1,1) == det(minormatrix(A,1,1))
1
Returns a copy of matrix m with row i and column j removed.
A = ((1,2,3),(4,5,6),(7,8,9)) minormatrix(A,1,1)
┌ ┐ │ 5 6 │ │ │ │ 8 9 │ └ ┘
Returns the remainder of a over b.
mod(5,3/8)
1 ╶─╴ 8
Evaluates expression x without expanding products of sums.
noexpand((x + 1)^2 / (x + 1))
x + 1
Returns 0 if x is true (nonzero). Returns 1 otherwise.
not(1=1)
0
Returns the approximate roots of polynomials with real or complex coefficients. Multiple roots are returned as a vector. See also roots.
p = x^5 - 1 nroots(p,x)
┌ ┐ │ 1 │ │ │ │ −0.809017 + 0.587785 i │ │ │ │ −0.809017 − 0.587785 i │ │ │ │ 0.309017 + 0.951057 i │ │ │ │ 0.309017 − 0.951057 i │ └ ┘
Returns the numerator of expression x.
numerator(a/b)
a
Returns 1 if at least one argument is true (nonzero). Returns 0 otherwise.
or(1=1,2=2)
1
Returns the outer product of vectors, matrices, and tensors.
A = (a,b,c) B = (x,y,z) outer(A,B)
┌ ┐ │ a x a y a z │ │ │ │ b x b y b z │ │ │ │ c x c y c z │ └ ┘
Symbol for π.
exp(i pi)
-1
Returns complex z in polar form.
polar(x - i y)
┌ ┐1/2 │ 2 2│ │x + y │ exp(-i arctan(y,x)) │ │ └ ┘
Use ^ to raise something to a power. Use parentheses for negative powers.
x^(-1/2)
1 ╶────╴ 1/2 x
Evaluate expressions and print the results. Useful for printing from inside a for loop.
for(j,1,3,print(j))
j = 1 j = 2 j = 3
For i equals j through k evaluate f. Returns the product of all f.
product(j,1,3,x + j)
3 2 x + 6 x + 11 x + 6
The original value of i is restored after product completes. If symbol i is used for index variable i then the imaginary unit is overridden in the scope of product.
product(y)
Returns the product of components of y.
y = (1,2,3,4) product(y)
24
Returns expression x without evaluating it first.
quote((x + 1)^2)
2 (x + 1)
Returns the number of indices that tensor a has.
A = ((a,b),(c,d)) rank(A)
2
Returns expression x with everything over a common denominator.
rationalize(1/a + 1/b + 1/2)
2 a + a b + 2 b ╶───────────────╴ 2 a b
Note: rationalize returns an unexpanded expression. If the result is assigned to a symbol, evaluating the symbol will expand the result. Use binding to retrieve the unexpanded expression.
f = rationalize(1/a + 1/b + 1/2) binding(f)
2 a + a b + 2 b ╶───────────────╴ 2 a b
Returns the real part of complex z.
real(2 - 3i)
2
Returns complex z in rectangular form.
rect(exp(i x))
cos(x) + i sin(x)
Returns the rational roots of a polynomial. Multiple roots are returned as a vector. See also nroots.
p = (x + 1) (x - 2) roots(p,x)
┌ ┐ │ −1 │ │ │ │ 2 │ └ ┘
If no roots are found then nil is returned. A nil result prints as blank so the following example uses infixform to print nil as a string.
p = x^2 + 1 infixform(roots(p,x))
nil
Rotates vector u and returns the result. Vector u is required to have 2n elements where n is an integer from 1 to 15. Arguments s,k,... are a sequence of rotation codes where s is an upper case letter and k is a qubit number 0 to n − 1. Rotations are evaluated from left to right. The available rotations are
C, k | Control prefix |
H, k | Hadamard |
P, k, φ | Phase modifier (use φ = 1/4 π for T rotation) |
Q, k | Quantum Fourier transform |
V, k | Inverse quantum Fourier transform |
W, k, j | Swap qubits |
X, k | Pauli X |
Y, k | Pauli Y |
Z, k | Pauli Z |
Control prefix C, k modifies the next rotation code so that it is a controlled rotation with k as the control qubit. Use two or more prefixes to specify multiple control qubits. For example, C, k, C, j, X, m is a Toffoli rotation. Fourier rotations Q, k and V, k are applied to qubits 0 through k. (Q and V ignore any control prefix.) See also the quantum computing section of the Eigenmath manual.
psi = (1,0,0,0) rotate(psi,H,0)
┌ ┐ │ 1 │ │ ╶────╴ │ │ 1/2 │ │ 2 │ │ │ │ 1 │ │ ╶────╴ │ │ 1/2 │ │ 2 │ │ │ │ 0 │ │ │ │ 0 │ └ ┘
Run script x where x evaluates to a filename string. Useful for importing function libraries.
run("/Users/heisenberg/EVA2.txt")
For Eigenmath installed from the Mac App Store, run files need to be put in the directory ~/Library/Containers/eigenmath/Data/ and the filename does not require a path.
run("EVA2.txt")
Returns expression x in a simpler form.
simplify(sin(x)^2 + cos(x)^2)
1
Returns the sine of x.
sin(pi/4)
1 ╶────╴ 1/2 2
Returns the hyperbolic sine of x.
expform(sinh(x))
1 1 −╶─╴ exp(−x) + ╶─╴ exp(x) 2 2
Returns the square root of x.
sqrt(10!)
1/2 720 7
In a script, it does what it says.
For i equals j through k evaluate f. Returns the sum of all f.
sum(j,1,5,x^j)
5 4 3 2 x + x + x + x + x
The original value of i is restored after sum completes. If symbol i is used for index variable i then the imaginary unit is overridden in the scope of sum.
sum(y)
Returns the sum of components of y.
y = (1,2,3,4) sum(y)
10
Returns the tangent of x.
Returns the hyperbolic tangent of x.
expform(tanh(x))
1 exp(2 x) −╶────────────╴ + ╶────────────╴ exp(2 x) + 1 exp(2 x) + 1
Returns the nth order Taylor series expansion of f(x) at a. If argument a is omitted then zero is used for the expansion point.
taylor(1/(1-x),x,5)
5 4 3 2 x + x + x + x + x + 1
If argument a is true (nonzero) then b is returned, else if c is true then d is returned, etc. If the number of arguments is odd then the final argument is returned if all else fails. Expressions can include the relational operators =, ==, <, <=, >, >=. Use the not function to test for inequality. (The equality operator == is available for contexts in which = is the assignment operator.)
A = 1 B = 1 test(A=B,"yes","no")
yes
Set trace=1 in a script to print the script as it is evaluated. Useful for debugging.
trace = 1
Note: The contract function is used to obtain the trace of a matrix.
Returns the transpose of tensor a with respect to indices i and j. If i and j are omitted then 1 and 2 are used. Hence a matrix can be transposed with a single argument.
A = ((a,b),(c,d)) transpose(A)
┌ ┐ │ a c │ │ │ │ b d │ └ ┘
Note: The argument list can be extended for multiple transpose operations. The arguments are evaluated from left to right. For example, transpose(A,1,2,2,3) is equivalent to transpose(transpose(A,1,2),2,3).
Set tty=1 to show results in string format. Set tty=0 to turn off. Can be useful when displayed results exceed window size.
tty = 1 (x + 1)^2
x^2 + 2 x + 1
Returns an n by n identity matrix.
unit(3)
┌ ┐ │ 1 0 0 │ │ │ │ 0 1 0 │ │ │ │ 0 0 1 │ └ ┘
Returns a null tensor with dimensions i, j, etc. Useful for creating a tensor and then setting the component values.
A = zero(3,3) for(k,1,3,A[k,k]=k) A
┌ ┐ │ 1 0 0 │ │ │ A = │ 0 2 0 │ │ │ │ 0 0 3 │ └ ┘