
Eigenmath Manual

9634295@gmail.com

Scripts go here Results appear here

Commands are entered here

↑

Multiple commands can be put together in a script. Scripts are run by clicking the Run
button. After a script runs, all of the results are available in command mode. To export
a result, click on the result text. The result can now be printed with P or copied to
the pasteboard with C. (Note that it is necessary to click on the result text instead of
somewhere else in the result window.)

Note: Times New Roman and Times New Roman Italic fonts need to be the standard Mac
fonts that include special symbols and Greek letters. See the following link for correcting
font problems.

support.apple.com/guide/font-book/restore-fonts-that-came-with-your-mac-fb34862/mac

1

Contents

1 Introduction 3

2 Syntax 4

3 Symbols 6

4 Units of measure 8

5 Function definitions 9

6 Arithmetic 10

7 Complex numbers 11

8 Draw 12

9 Linear algebra 15

10 Component arithmetic 16

11 Quantum computing 17

12 Derivative 20

13 Template functions 21

14 Laplacian 22

15 Integral 23

16 Arc length 24

17 Line integral 25

18 Surface area 27

19 Surface integral 28

20 Index 29

21 Tricks 51

2

1 Introduction

Consider the canonical commutation relation in one dimension.

XP − PX = iℏ

Let

X = x, P = −iℏ ∂
∂x

Show that
(XP − PX)ψ(x, t) = iℏψ(x, t)

Eigenmath code:

X(f) = x f

P(f) = -i hbar d(f,x)

X(P(psi(x,t))) - P(X(psi(x,t)))

Result:

iℏψ(x, t)

Another example: Let

H =
P 2

2m

Show that

XH −HX =
iℏP
m

Eigenmath code:

X(f) = x f

P(f) = -i hbar d(f,x)

H(f) = P(P(f)) / (2 m)

A = X(H(psi(x,t))) - H(X(psi(x,t)))

B = i hbar P(psi(x,t)) / m

check(A == B) -- continue if A equals B

"ok"

Result:

ok

3

2 Syntax

Arithmetic operators have the expected precedence of multiplication and division before
addition and subtraction. Subexpressions in parentheses have highest precedence.

Math Eigenmath Comment

a = b a == b test for equality

−a -a negation

a+ b a+b addition

a− b a-b subtraction

ab a b multiplication, also a*b

a

b
a/b division

a

bc
a/b/c division is left-associative

a2 a^2 power

√
a sqrt(a) square root, also a^(1/2)

a (b+ c) a (b+c) space is required

f(a) f(a) functionab
c

 (a,b,c) vector

(
a b
c d

)
((a,b),(c,d)) matrix

F 1
2 F[1,2] tensor component access

"hello, world" string literal

π pi

e exp(1) natural number

4

Parentheses are required around negative exponents. For example,

10^(-3)

instead of

10^-3

In general, parentheses are always required when the exponent is an expression. For example,
x^1/2 is evaluated as (x1)/2 which is probably not the desired result.

x^1/2

1
2
x

Using x^(1/2) yields the desired result.

x^(1/2)

x1/2

5

3 Symbols

Symbols are defined with an equals sign.

N = 212^17

No result is printed when a symbol is defined. To see the value of a symbol, just evaluate it.

N

N = 3529471145760275132301897342055866171392

Symbols can have more that one letter. Everything after the first letter is displayed as a
subscript.

NA = 6.02214 10^23

NA

NA = 6.02214× 1023

A symbol can be the name of a Greek letter.

xi = 1/2

xi

ξ = 1
2

Greek letters can appear in subscripts.

Amu = 2.0

Amu

Aµ = 2.0

The following example shows how a symbol is scanned to find Greek letters.

alphamunu = 1

alphamunu

αµν = 1

Symbol definitions are evaluated serially until a terminal symbol is reached. The following
example sets A = B followed by B = C. Then when A is evaluated, the result is C.

A = B

B = C

A

6

A = C

Although A = C is printed, inside the program the binding of A is still B, as can be seen
with the binding function.

binding(A)

B

The quote function returns its argument unevaluated and can be used to clear a symbol.
The following example clears A so that its evaluation goes back to being A instead of C.

A = quote(A)

A

A

7

4 Units of measure

Symbols can be used for units of measure.

v = 1.2 meter / second

v

1.2meter

second

Assign strings to unit symbols for improved display appearance.

meter = "m"

second = "s"

v

1.2m

s

Derived units can be handled by converting to base units.

h = 6.626 10^(-34) joule second

joule = kilogram meter^2 / second^2

kilogram = "kg"

h

h =
6.626× 10−34 kgm2

s

Here is a trick for displaying derived units. In this example, convert joules to string “J”.

h "J" / joule

6.626× 10−34 J s

See the following link for a script with recommended physical values in SI units.

https://georgeweigt.github.io/examples/physical-constants.html

8

5 Function definitions

The following example defines a sinc function and evaluates it at π/2.

f(x) = sin(x)/x

f(pi/2)

2

π

In a function definition, use eval to evaluate an argument with a substitution.

h(f,a,b) = eval(f,x,b) - eval(f,x,a)

h(x^2, 1, 2)

3

To define a local symbol in a function, extend the argument list. In the following example,
argument y is used as a local symbol. Note that function L is called without supplying an
argument for y.

L(f,n,y) = eval(exp(y) d(exp(-y) y^n, y, n) / n!, y, f)

L(cos(x),2)

1
2
cos(x)2 − 2 cos(x) + 1

Use do when multiple steps are needed in a function. The last do item is the return value.
The following example defines function I for integrating hydrogen wavefunctions.

I(f) = do(

f = expform(f r^2 sin(theta)),

f = defint(f, theta, 0, pi, phi, 0, 2 pi),

f = integral(f,r),

-eval(f,r,0) -- return value

)

Notes:
1. Maximum number of arguments is nine.
2. Argument scope is restricted to just the function definition.
3. Function definitions cannot be nested.

9

6 Arithmetic

Big integer arithmetic is used so that numerical values can exceed machine size.

2^64

18446744073709551616

212^17

3529471145760275132301897342055866171392

Rational number arithmetic is used by default.

1/2 + 1/3

5
6

Floating point arithmetic can also be used.

1/2 + 1/3.0

0.833333

The float function converts integers and rationals to floating point values.

float(212^17)

3.52947× 1039

The following example shows how to enter a floating point value using scientific notation.

epsilon = 1.0 10^(-6)

epsilon

ε = 1.0× 10−6

10

7 Complex numbers

Symbol i is initialized to
√
−1.

Complex quantities can be entered in either rectangular or polar form.

a + i b

a+ ib

exp(1/3 i pi)

exp
(
1
3
iπ
)

Converting a complex number to rectangular or polar coordinates causes simplification of
mixed forms.

A = 1 + i

B = sqrt(2) exp(1/4 i pi)

A - B

1 + i− 21/2 exp
(
1
4
iπ
)

rect(last)

0

Rectangular complex quantities, when raised to a power, are multiplied out.

(a + i b)^2

a2 − b2 + 2iab

When a and b are numerical and the power is negative, the evaluation is done as follows.

(a+ ib)−n =

(
a− ib

(a+ ib)(a− ib)

)n

=

(
a− ib

a2 + b2

)n

Here are a few examples.

1/(2 - i)

2
5
+ 1

5
i

(-1 + 3 i)/(2 - i)

−1 + i

The absolute value of a complex number returns its magnitude.

abs(3 + 4 i)

5

The imaginary unit can be changed from i to j by defining j =
√
−1.

j = sqrt(-1)

sqrt(-4)

2j

11

8 Draw

draw(f,x) draws a graph of function f of x.

draw(x^2,x)

The vectors xrange and yrange control the scale of the graph.

xrange = (-1,1)

yrange = (0,2)

draw(x^2)

Parametric drawing occurs when a function returns a vector. The vector trange controls the
parametric range. The default is trange=(-pi,pi). In the following example, draw varies
theta over the default range −π to +π.

xrange = (-10,10)

yrange = (-10,10)

f = 5 (cos(theta),sin(theta))

draw(f,theta)

12

In the following example, trange is reduced to draw a quarter circle instead of a full circle.

trange = (0,pi/2)

f = 5 (cos(theta),sin(theta))

draw(f,theta)

Draw a lemniscate.

trange = (-pi,pi)

X = cos(t) / (1 + sin(t)^2)

Y = sin(t) cos(t) / (1 + sin(t)^2)

f = 5 (X,Y)

draw(f,t)

13

Draw a cardioid.

r = (1 + cos(t)) / 2

u = (cos(t),sin(t))

f = r u

xrange = (-1,1)

yrange = (-1,1)

trange = (0,2pi)

draw(f,t)

14

9 Linear algebra

dot(a,b,...) returns the inner product of vectors, matrices, and higher rank tensors. Also
known as the matrix product. Arguments are evaluated from right to left for maximum
efficiency when the rightmost argument is a vector.

Example 1. Compute the product AX for

A =

(
a11 a12
a21 a22

)
, X =

(
x1
x2

)

A = ((a11,a12),(a21,a22))

X = (x1,x2)

dot(A,X)[
a11x1 + a12x2

a21x1 + a22x2

]

Example 2. Solve for vector X in AX = B.

A = ((3,7),(1,-9))

B = (16,-22)

X = dot(inv(A),B)

X

X =

[
− 5

17

41
17

]

Example 3. Show that

A−1 =
adjA

detA

A = ((a,b),(c,d))

inv(A) == adj(A) / det(A)

1

15

10 Component arithmetic

Tensor plus scalar adds scalar to each tensor component.

A = ((a,b),(c,d))

A + 10[
a+ 10 b+ 10

c+ 10 d+ 10

]

The product of two tensors is the Hadamard (element-wise) product.

A = ((a,b),(c,d))

A A[
a2 b2

c2 d2

]

Tensor raised to a power raises each component to the power.

A = ((a,b),(c,d))

A^2[
a2 b2

c2 d2

]

16

11 Quantum computing

A quantum computer can be simulated by applying rotations to a unit vector u ∈ C2n where
C is the set of complex numbers and n is the number of qubits. The dimension is 2n because
a register with n qubits has 2n eigenstates. (Recall that an eigenstate is the output of a
quantum computer.) Quantum operations are “rotations” because they preserve |u| = 1.
Mathematically, a rotation of u is equivalent to the product Ru where R is a 2n×2n matrix.

Eigenstates |j⟩ are represented by the following vectors. (Each vector has 2n elements.)

|0⟩ = (1, 0, 0, . . . , 0)

|1⟩ = (0, 1, 0, . . . , 0)

|2⟩ = (0, 0, 1, . . . , 0)

...

|2n − 1⟩ = (0, 0, 0, . . . , 1)

A quantum computer algorithm is a sequence of rotations applied to the initial state |0⟩. (The
sequence could be combined into a single rotation by associativity of matrix multiplication.)
Let ψf be the final state of the quantum computer after all the rotations have been applied.
Like any other state, ψf is a linear combination of eigenstates.

ψf =
2n−1∑
j=0

cj|j⟩, cj ∈ C, |ψf | = 1

The last step is to measure ψf and get a result. Measurement rotates ψf to an eigenstate
|j⟩. The measurement result is |j⟩. The probability Pj of getting a specific result |j⟩ is

Pj = |cj|2 = cjc
∗
j

Note that if ψf is already an eigenstate then no rotation occurs. (The probability of observing
a different eigenstate is zero.) Since the measurement result is always an eigenstate, the
coefficients cj cannot be observed. However, the same calculation can be run multiple times
to obtain a probability distribution of results. The probability distribution is an estimate of
|cj|2 for each |j⟩ in ψf .

Unlike a real quantum computer, in a simulation the final state ψf , or any other state, is
available for inspection. Hence there is no need to simulate the measurement process. The
probability distribution of the result can be computed directly as

P = ψf ψ
∗
f

where ψf ψ
∗
f is the Hadamard (element-wise) product of vector ψf and its complex conjugate.

Result P is a vector such that Pj is the probability of eigenstate |j⟩ and

2n−1∑
j=0

Pj = 1

17

Note: Eigenmath index numbering begins with 1 hence P[1] is the probability of |0⟩, P[2]
is the probability of |1⟩, etc.

The Eigenmath function rotate(u, s, k, . . .) rotates vector u and returns the result. Vector
u is required to have 2n elements where n is an integer from 1 to 15. Arguments s, k, . . . are
a sequence of rotation codes where s is an upper case letter and k is a qubit number from 0
to n− 1. Rotations are evaluated from left to right. The available rotation codes are

C, k Control prefix
H, k Hadamard
P, k, ϕ Phase modifier (use ϕ = 1

4
π for T rotation)

Q, k Quantum Fourier transform
V, k Inverse quantum Fourier transform
W,k, j Swap bits
X, k Pauli X
Y, k Pauli Y
Z, k Pauli Z

Control prefix C, k modifies the next rotation code so that it is a controlled rotation with
k as the control qubit. Use two or more prefixes to specify multiple control qubits. For
example, C, k, C, j,X,m is a Toffoli rotation. Fourier rotations Q, k and V, k are applied to
qubits 0 through k. (Q and V ignore any control prefix.)

List of rotate(u, s, k, . . .) error codes:

1 Argument u is not a vector or does not have 2n elements where n = 1, 2, . . . , 15.

2 Unexpected end of argument list (i.e., missing argument).

3 Bit number format error or range error.

4 Unknown rotation code.

Example: Verify the following truth table for quantum operator CNOT where qubit 0 is the
control and qubit 1 is the target. (Target is inverted when control is set.)

Target Control Output
0 0 00
0 1 11
1 0 10
1 1 01

U(psi) = rotate(psi,C,0,X,1) -- CNOT, control 0, target 1

ket00 = (1,0,0,0)

ket01 = (0,1,0,0)

ket10 = (0,0,1,0)

18

ket11 = (0,0,0,1)

U(ket00) == ket00

U(ket01) == ket11

U(ket10) == ket10

U(ket11) == ket01

Here are some useful Eigenmath code snippets for setting up a simulation and computing
the result.

1. Initialize ψ = |0⟩.

n = 4 -- number of qubits (example)

N = 2^n -- number of eigenstates

psi = zero(N)

psi[1] = 1

2. Compute the probability distribution for state ψ.

P = psi conj(psi)

Hence

P[1] = probability that |0⟩ will be the result

P[2] = probability that |1⟩ will be the result

P[3] = probability that |2⟩ will be the result

...

P[N] = probability that |N − 1⟩ will be the result

3. (Only for macOS) Draw a probability distribution.

xrange = (0,N)

yrange = (0,1)

draw(P[ceiling(x)],x)

4. Compute an expectation value.

sum(k,1,N, (k - 1) P[k])

5. Make the high order qubit “don’t care.”

for(k,1,N/2, P[k] = P[k] + P[k + N/2])

Hence for N = 16

P[1] = probability that the result will be |0⟩ or |8⟩
P[2] = probability that the result will be |1⟩ or |9⟩
P[3] = probability that the result will be |2⟩ or |10⟩
...

P[8] = probability that the result will be |7⟩ or |15⟩

19

12 Derivative

d(f,x) returns the derivative of f with respect to x.

d(x^2,x)

2x

Extend the argument list for multiderivatives.

f = 1 / (x + y)

d(f,x,y)

2

(x+ y)3

d(sin(x),x,x)

− sin(x)

Another syntax for nth derivative.

d(sin(x),x,2)

− sin(x)

The gradient of f is returned for vector x in d(f,x).

r = sqrt(x^2 + y^2)

d(r,(x,y))
x

(x2 + y2)1/2

y

(x2 + y2)1/2

The f in d(f,x) can be a vector or higher rank function. Gradient increases rank by one.

F = (x^2,y^2)

X = (x,y)

d(F,X)[
2x 0

0 2y

]

20

13 Template functions

Function f in d(f,x) does not have to be defined, it can be a template function with
just a name and an argument list. The argument list determines the result. For example,
d(f(x),x) evaluates to itself because f depends on x. However, d(f(x),y) evaluates to
zero because f does not depend on y.

Example 1. f(x) depends on x.

d(f(x),x)

d(f(x), x)

Example 2. f(x) does not depend on y.

d(f(x),y)

0

Example 3. f(x, y) depends on both x and y.

d(f(x,y),y)

d(f(x, y), y)

Example 4. f() is a wildcard that matches any symbol.

d(f(),t)

d(f(), t)

Template functions are useful for working with differential forms. For example, show that

∇ · (∇× F) = 0

F = (Fx(),Fy(),Fz())

div(curl(F))

0

21

14 Laplacian

The Laplacian ∇2 is the divergence of the gradient of scalar function f .

∇2f = ∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

div(grad(f()))

d(d(f(), x), x) + d(d(f(), y), y) + d(d(f(), z), z)

This is the vector Laplacian.

∇2A = ∇ · ∇A−∇× (∇×A) =

∇2Ax

∇2Ay

∇2Az

 =
∂2A

∂x2
+
∂2A

∂y2
+
∂2A

∂z2

A = (Ax(),Ay(),Az())

div(grad(A)) - curl(curl(A)) == d(A,x,x) + d(A,y,y) + d(A,z,z)

1

Show that
∇ · ∇A = ∇(∇ ·A)

div(grad(A)) == grad(div(A))

1

22

15 Integral

integral(f,x) returns the integral of f with respect to x.

integral(x^2,x)

1
3
x3

Extend the argument list for multiple integrals.

f = x y

integral(f,x,y)

1
4
x2y2

defint(f,x,a,b) computes the definite integral of f with respect to x evaluated from a to b.
The argument list can be extended for multiple integrals. The following example computes
the integral of f = x2 over the domain of a semicircle. For each x along the abscissa, y
ranges from 0 to

√
1− x2.

defint(x^2, y, 0, sqrt(1 - x^2), x, -1, 1)

1
8
π

Alternatively, eval can be used to compute a definite integral step by step.

I = integral(x^2,y)

I = eval(I,y,sqrt(1 - x^2)) - eval(I,y,0)

I = integral(I,x)

eval(I,x,1) - eval(I,x,-1)

1
8
π

Here is a useful trick. Integrals involving sine and cosine can often be solved using exponen-
tials. For example, the definite integral∫ 2π

0

(
sin4 t− 2 cos3(t/2) sin t

)
dt

can be solved as follows.

f = sin(t)^4 - 2 cos(t/2)^3 sin(t)

f = expform(f)

defint(f, t, 0, 2 pi)

3
4
π − 16

5

23

16 Arc length

Let g(t) be a parametric function that draws a curve in Rn. The arc length from g(a) to
g(b) is given by ∫ b

a

|g′(t)| dt

where |g′(t)| is the length of the tangent vector at g(t).

Example 1. Find the length of the curve y = x2 from x = 0 to x = 1.

g = (t,t^2)

defint(abs(d(g,t)),t,0,1)

1
2
51/2 − 1

4
log(2) + 1

4
log(2 51/2 + 4)

float

1.47894

As expected, the result is greater than
√
2 ≈ 1.414, the length of a straight line from (0, 0)

to (1, 1).

The following script does a discrete computation of the arc length by dividing the curve into
100 pieces.

g(t) = (t,t^2)

h(k) = abs(g(k/100.0) - g((k-1)/100.0))

sum(k,1,100,h(k))

1.47894

As expected, the discrete result matches the analytic result.

Example 2. Find the length of the curve y = x3/2 from the origin to x = 4
3
.

g = (t,t^(3/2))

defint(abs(d(g,t)),t,0,4/3)

56
27

24

17 Line integral

There are two kinds of line integrals, one for scalar fields and one for vector fields. The
following table shows how both are based on the calculation of arc length.

Abstract form Computable form

Arc length

∫
C

ds

∫ b

a

|g′(t)| dt

Line integral, scalar field

∫
C

f ds

∫ b

a

f(g(t)) |g′(t)| dt

Line integral, vector field

∫
C

(F · u) ds
∫ b

a

F (g(t)) · g′(t) dt

Note that for the measure ds we have

ds = |g′(t)| dt

For vector fields, symbol u is the unit tangent vector

u =
g′(t)

|g′(t)|

Note that u cancels with ds as follows.∫
C

(F · u) ds =
∫ b

a

(
F (g(t)) · g

′(t)

|g′(t)|

)
|g′(t)| dt =

∫ b

a

F (g(t)) · g′(t) dt

Example 1. Evaluate
∫
C
x ds where C is a straight line from (0, 0) to (1, 1).

x = t

y = t

g = (x,y)

defint(x abs(d(g,t)), t, 0, 1)

1

21/2

Example 2. Evaluate
∫
C
x dx where C is a straight line from (0, 0) to (1, 1).

We have x dx = (F · u) ds hence

25

x = t

y = t

g = (x,y)

F = (x,0)

defint(dot(F,d(g,t)), t, 0, 1)

1
2

The following line integral problems are from Advanced Calculus, Fifth Edition by Wilfred
Kaplan.

Example 3. Evaluate
∫
y2 dx along the straight line from (0, 0) to (2, 2).

The following solution parametrizes x and y so that the endpoint (2, 2) corresponds to t = 1.

x = 2 t

y = 2 t

g = (x,y)

F = (y^2,0)

defint(dot(F,d(g,t)), t, 0, 1)

8
3

Example 4. Evaluate
∫
z dx + x dy + y dz along the path x = 2t + 1, y = t2, z = 1 + t3,

0 ≤ t ≤ 1.

x = 2 t + 1

y = t^2

z = 1 + t^3

g = (x,y,z)

F = (z,x,y)

defint(dot(F,d(g,t)), t, 0, 1)

163
30

26

18 Surface area

Let S be a surface parameterized by x and y. That is, let S = (x, y, z) where z = f(x, y).
The tangent lines at a point on S form a tiny parallelogram. The area a of the parallelogram
is given by the magnitude of the cross product.

a =

∣∣∣∣∂S∂x × ∂S

∂y

∣∣∣∣
By summing over all the parallelograms we obtain the total surface area A. Hence

A =

∫ ∫
dA =

∫ ∫
a dx dy

The following example computes the surface area of a unit disk parallel to the xy plane.

z = 2

S = (x,y,z)

a = abs(cross(d(S,x),d(S,y)))

defint(a,y,-sqrt(1 - x^2),sqrt(1 - x^2),x,-1,1)

π

The result is π, the area of a unit circle, which is what we expect. The following example
computes the surface area of z = x2 + 2y over a unit square.

z = x^2 + 2y

S = (x,y,z)

a = abs(cross(d(S,x),d(S,y)))

defint(a,x,0,1,y,0,1)

5
8
log(5) + 3

2

The following exercise is from Multivariable Mathematics by Williamson and Trotter, p. 598.
Find the area of the spiral ramp defined by

S =

u cos v
u sin v
v

 , 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π

x = u cos(v)

y = u sin(v)

z = v

S = (x,y,z)

a = expform(abs(cross(d(S,u),d(S,v))))

defint(a,u,0,1,v,0,3pi)

3π

21/2
+ 3

2
π log

(
21/2 + 1

)
float

10.8177

27

19 Surface integral

A surface integral is like adding up all the wind on a sail. In other words, we want to compute∫∫
F · n dA

where F · n is the amount of wind normal to a tiny parallelogram dA. The integral sums
over the entire area of the sail. Let S be the surface of the sail parameterized by x and y.
(In this model, the z direction points downwind.) By the properties of the cross product we
have the following for the unit normal n and for dA.

n =

∂S
∂x

× ∂S
∂y∣∣∣∂S∂x × ∂S
∂y

∣∣∣ dA =

∣∣∣∣∂S∂x × ∂S

∂y

∣∣∣∣ dx dy
Hence ∫∫

F · n dA =

∫∫
F ·

(
∂S

∂x
× ∂S

∂y

)
dx dy

The following exercise is from Advanced Calculus by Wilfred Kaplan, p. 313. Evaluate the
surface integral ∫∫

S

F · n dσ

where F = xy2zi− 2x3j+ yz2k, S is the surface z = 1− x2 − y2, x2 + y2 ≤ 1 and n is upper.

Note that the surface intersects the xy plane in a circle. By the right hand rule, crossing x
into y yields n pointing upwards hence

n dσ =

(
∂S

∂x
× ∂S

∂y

)
dx dy

The following code computes the surface integral. The symbols f and h are used as temporary
variables.

z = 1 - x^2 - y^2

F = (x y^2 z, -2 x^3, y z^2)

S = (x,y,z)

f = dot(F,cross(d(S,x),d(S,y)))

h = sqrt(1 - x^2)

defint(f, y, -h, h, x, -1, 1)

1
48
π

28

20 Index

abs(x)

Returns the absolute value or vector length of x.

X = (x,y,z)

abs(X)

(x2 + y2 + z2)
1/2

adj(m)

Returns the adjunct of matrix m. Adjunct is equal to determinant times inverse.

A = ((a,b),(c,d))

adj(A) == det(A) inv(A)

1

and(a, b, . . .)

Returns 1 if all arguments are true (nonzero). Returns 0 otherwise.

and(1=1,2=2)

1

arccos(x)

Returns the arc cosine of x.

arccos(1/2)

1
3
π

arccosh(x)

Returns the arc hyperbolic cosine of x.

arcsin(x)

Returns the arc sine of x.

arcsin(1/2)

1
6
π

29

arcsinh(x)

Returns the arc hyperbolic sine of x.

arctan(y, x)

Returns the arc tangent of y over x. If x is omitted then x = 1 is used.

arctan(1,0)

1
2
π

arctanh(x)

Returns the arc hyperbolic tangent of x.

arg(z)

Returns the angle of complex z.

arg(2 - 3i)

− arctan(3, 2)

binding(s)

The result of evaluating a symbol can differ from the symbol’s binding. For example, the
result may be expanded. The binding function returns the actual binding of a symbol.

p = quote((x + 1)^2)

p

p = x2 + 2x+ 1

binding(p)

(x+ 1)2

break

Break out of a loop or for function.

k = 0

loop(k = k + 1, test(k == 4, break), print(k))

k = 1
k = 2
k = 3

30

ceiling(x)

Returns the smallest integer greater than or equal to x.

ceiling(1/2)

1

check(x)

If x is true (nonzero) then continue, else stop. Expression x can include the relational
operators =, ==, <, <=, >, >=. Use the not function to test for inequality.

A = exp(i pi)

B = -1

check(A == B) -- stop here if A not equal to B

choose(n, k)

Returns the binomial coefficient n choose k.

choose(52,5) -- number of poker hands

2598960

clear

Clears all symbol definitions.

clock(z)

Returns complex z in polar form with base of negative 1 instead of e.

clock(2 - 3i)

131/2 (−1)− arctan(3,2)/π

cofactor(m, i, j)

Returns the cofactor of matrix m for row i and column j.

A = ((a,b),(c,d))

cofactor(A,1,2) == adj(A)[2,1]

1

31

conj(z)

Returns the complex conjugate of z.

conj(2 - 3i)

2 + 3i

contract(a, i, j)

Returns tensor a summed over indices i and j. If i and j are omitted then 1 and 2 are used.
The expression contract(m) computes the trace of matrix m.

A = ((a,b),(c,d))

contract(A)

a+ d

cos(x)

Returns the cosine of x.

cos(pi/4)

1

21/2

cosh(x)

Returns the hyperbolic cosine of x.

expform(cosh(x))

1
2
exp(−x) + 1

2
exp(x)

cross(u, v)

Returns the cross product of vectors u and v.

curl(v)

Returns the curl of vector v with respect to symbols x, y, and z.

32

d(f, x, . . .)

Returns the partial derivative of f with respect to x and any additional arguments.

d(sin(x),x)

cos(x)

Multiderivatives are computed by extending the argument list.

d(sin(x),x,x)

− sin(x)

A numeric argument n computes the nth derivative with respect to the previous symbol.

d(sin(x y),x,2,y,2)

x2y2 sin(xy)− 4xy cos(xy)− 2 sin(xy)

Argument f can be a tensor of any rank. Argument x can be a vector. When x is a vector
the result is the gradient of f .

F = (f(),g(),h())

X = (x,y,z)

d(F,X)d(f(), x) d(f(), y) d(f(), z)

d(g(), x) d(g(), y) d(g(), z)

d(h(), x) d(h(), y) d(h(), z)

Symbol d can be used as a variable name. Doing so does not conflict with function d.

Symbol d can be redefined as a different function. The function derivative, a synonym for
d, can be used to obtain a partial derivative.

defint(f, x, a, b, . . .)

Returns the definite integral of f with respect to x evaluated from a to b. The argument
list can be extended for multiple integrals. The following example integrates over theta then
over phi.

defint(sin(theta), theta, 0, pi, phi, 0, 2 pi)

4π

33

denominator(x)

Returns the denominator of expression x.

denominator(a/b)

b

det(m)

Returns the determinant of matrix m.

A = ((a,b),(c,d))

det(A)

ad− bc

dim(a, n)

Returns the dimension of the nth index of tensor a. Index numbering starts with 1.

A = ((1,2),(3,4),(5,6))

dim(A,1)

3

div(v)

Returns the divergence of vector v with respect to symbols x, y, and z.

do(a, b, . . .)

Evaluates each argument from left to right. Returns the result of the final argument.

do(A=1,B=2,A+B)

3

dot(a, b, . . .)

Returns the dot product of vectors, matrices, and tensors. Also known as the matrix product.
Arguments are evaluated from right to left. The following example solves for X in AX = B.

A = ((1,2),(3,4))

B = (5,6)

X = dot(inv(A),B)

X[
−4
9
2

]

34

eigenvec(m)

Returns eigenvectors for matrix m. Matrix m is required to be numerical, real, and symmet-
ric. The return value is a matrix with each column an eigenvector. Eigenvalues are obtained
as shown.

A = ((1,2,3),(2,6,4),(3,4,5))

Q = eigenvec(A)

D = dot(transpose(Q),A,Q) -- eigenvalues on the diagonal of D

dot(Q,D,transpose(Q))1 2 3

2 6 4

3 4 5

erf(x)

Error function of x. Returns a numerical value if x is a real number.

erf(1.0)

0.842701

d(erf(x),x)

2 exp(−x2)
π1/2

erfc(x)

Complementary error function of x. Returns a numerical value if x is a real number.

erfc(1.0)

0.157299

d(erfc(x),x)

−2 exp(−x2)
π1/2

35

eval(f, x, a, y, b, . . .)

Returns f evaluated with x replaced by a, y replaced by b, etc. All arguments can be
expressions.

f = sqrt(x^2 + y^2)

eval(f,x,3,y,4)

5

In the following example, eval is used to replace x with cos(theta).

-- associated legendre of cos theta

P(l,m,x) = test(m < 0, (-1)^m (l + m)! / (l - m)! P(l,-m),

1 / (2^l l!) sin(theta)^m *

eval(d((x^2 - 1)^l, x, l + m), x, cos(theta)))

P(2,-1)

−1
2
cos(θ) sin(θ)

exp(x)

Returns the exponential of x.

exp(i pi)

−1

expcos(z)

Returns the cosine of z in exponential form.

expcos(z)

1
2
exp(iz) + 1

2
exp(−iz)

expcosh(z)

Returns the hyperbolic cosine of z in exponential form.

expcosh(z)

1
2
exp(−z) + 1

2
exp(z)

36

expform(x)

Returns expression x with trigonometric and hyperbolic functions converted to exponentials.

expform(cos(x) + i sin(x))

exp(ix)

expsin(z)

Returns the sine of z in exponential form.

expsin(z)

−1
2
i exp(iz) + 1

2
i exp(−iz)

expsinh(z)

Returns the hyperbolic sine of z in exponential form.

expsinh(z)

−1
2
exp(−z) + 1

2
exp(z)

exptan(z)

Returns the tangent of z in exponential form.

exptan(z)

i

exp(2iz) + 1
− i exp(2iz)

exp(2iz) + 1

exptanh(z)

Returns the hyperbolic tangent of z in exponential form.

exptanh(z)

− 1

exp(2z) + 1
+

exp(2z)

exp(2z) + 1

factorial(n)

Returns the factorial of n. The expression n! can also be used.

20!

2432902008176640000

37

float(x)

Returns expression x with rational numbers and integers converted to floating point values.
The symbol pi and the natural number are also converted.

float(212^17)

3.52947× 1039

floor(x)

Returns the largest integer less than or equal to x.

floor(1/2)

0

for(a, b, c, d, e, f, . . .)

For a equals b through c inclusive, evaluate the remaining arguments in a loop. Arguments
b and c are integers. Symbol a is advanced by plus or minus 1 in the direction of c each
time through the loop. Use break to break out of the loop early. The original value of a is
restored after for completes. Note that if symbol i is used for a then the imaginary unit is
overridden in the scope of for.

for(k,1,3,print(k))

k = 1
k = 2
k = 3

grad(f)

Returns the gradient d(f,(x,y,z)).

grad(f())d(f(), x)d(f(), y)

d(f(), z)

hadamard(a, b, . . .)

Returns the Hadamard (element-wise) product.

X = (a,b,c)

hadamard(X,X)a
2

b2

c2

38

i

Symbol i is initialized to the imaginary unit
√
−1.

exp(i pi)

−1

Note: It is ok to clear or redefine i and use the symbol for something else.

imag(z)

Returns the imaginary part of complex z.

imag(2 - 3i)

−3

infixform(x)

Converts expression x to a string and returns the result.

p = (x + 1)^2

infixform(p)

x^2 + 2 x + 1

inner(a, b, . . .)

Returns the inner product of vectors, matrices, and tensors. Also known as the matrix
product.

A = ((a,b),(c,d))

B = (x,y)

inner(A,B)[
ax+ by

cx+ dy

]

Note: inner and dot are the same function.

integral(f, x)

Returns the integral of f with respect to x.

integral(x^2,x)

1
3
x3

39

inv(m)

Returns the inverse of matrix m.

A = ((1,2),(3,4))

inv(A)[
−2 1
3
2

−1
2

]

j

Set j=sqrt(-1) to use j for the imaginary unit instead of i.

j = sqrt(-1)

1/sqrt(-1)

−j

kronecker(a, b, . . .)

Returns the Kronecker product of vectors and matrices.

A = ((1,2),(3,4))

B = ((a,b),(c,d))

kronecker(A,B)
a b 2a 2b

c d 2c 2d

3a 3b 4a 4b

3c 3d 3c 4d

last

The result of the previous calculation is stored in last.

212^17

3529471145760275132301897342055866171392

last^(1/17)

212

Symbol last is an implied argument when a function has no argument list.

212^17

3529471145760275132301897342055866171392

float

3.52947× 1039

40

log(x)

Returns the natural logarithm of x.

log(x^y)

y log(x)

loop(a, b, c, . . .)

Evaluate arguments in a loop. Use break to break out of the loop.

k = 0

loop(k = k + 1, test(k == 4, break), print(k))

k = 1
k = 2
k = 3

mag(z)

Returns the magnitude of complex z. Function mag treats undefined symbols as real while
abs does not.

mag(x + i y)

(x2 + y2)1/2

minor(m, i, j)

Returns the minor of matrix m for row i and column j.

A = ((1,2,3),(4,5,6),(7,8,9))

minor(A,1,1) == det(minormatrix(A,1,1))

1

minormatrix(m, i, j)

Returns a copy of matrix m with row i and column j removed.

A = ((1,2,3),(4,5,6),(7,8,9))

minormatrix(A,1,1)[
5 6

8 9

]

41

noexpand(x)

Evaluates expression x without expanding products of sums.

noexpand((x + 1)^2 / (x + 1))

x+ 1

not(x)

Returns 0 if x is true (nonzero). Returns 1 otherwise.

not(1=1)

0

nroots(p, x)

Returns the approximate roots of polynomials with real or complex coefficients. Multiple
roots are returned as a vector.

p = x^5 - 1

nroots(p,x)

1

−0.809017 + 0.587785 i

−0.809017− 0.587785 i

0.309017 + 0.951057 i

0.309017− 0.951057 i

number(x)

Returns 1 if x is a real number. Returns 0 otherwise.

number(1/2)

1

number(x)

0

numerator(x)

Returns the numerator of expression x.

numerator(a/b)

a

42

or(a, b, . . .)

Returns 1 if at least one argument is true (nonzero). Returns 0 otherwise.

or(1=1,2=2)

1

outer(a, b, . . .)

Returns the outer product of vectors, matrices, and tensors.

A = (a,b,c)

B = (x,y,z)

outer(A,B)ax ay az

bx by bz

cx cy cz

pi

Symbol for π.

exp(i pi)

−1

polar(z)

Returns complex z in polar form.

polar(x - i y)

(x2 + y2)1/2 exp(−i arctan(y, x))

power

Use ^ to raise something to a power. Use parentheses for negative powers.

x^(-2)

1

x2

43

print(a, b, . . .)

Evaluate arguments and print the results. Useful for printing from inside a for loop.

for(j,1,3,print(j))

j = 1
j = 2
j = 3

product(i, j, k, f)

For i equals j through k evaluate f . Returns the product of all f .

product(j,1,3,x + j)

x3 + 6x2 + 11x+ 6

The original value of i is restored after product completes. If symbol i is used for index
variable i then the imaginary unit is overridden in the scope of product.

product(y)

Returns the product of components of y.

y = (1,2,3,4)

product(y)

24

quote(x)

Returns expression x without evaluating it first.

quote((x + 1)^2)

(x+ 1)2

rank(a)

Returns the number of indices that tensor a has.

A = ((a,b),(c,d))

rank(A)

2

44

rationalize(x)

Returns expression x with everything over a common denominator.

rationalize(1/a + 1/b + 1/2)

2a+ ab+ 2b

2ab

Note: rationalize returns an unexpanded expression. If the result is assigned to a symbol,
evaluating the symbol will expand the result. Use binding to retrieve the unexpanded
expression.

f = rationalize(1/a + 1/b + 1/2)

binding(f)

2a+ ab+ 2b

2ab

real(z)

Returns the real part of complex z.

real(2 - 3i)

2

rect(z)

Returns complex z in rectangular form.

rect(exp(i x))

cos(x) + i sin(x)

roots(p, x)

Returns the rational roots of a polynomial. Multiple roots are returned as a vector.

p = (x + 1) (x - 2)

roots(p,x)[
−1

2

]
If no roots are found then nil is returned. A nil result is not printed so the following
example uses infixform to print nil as a string.

p = x^2 + 1

infixform(roots(p,x))

nil

45

rotate(u, s, k, . . .)

Rotates vector u and returns the result. Vector u is required to have 2n elements where n is
an integer from 1 to 15. Arguments s, k, . . . are a sequence of rotation codes where s is an
upper case letter and k is a qubit number from 0 to n− 1. Rotations are evaluated from left
to right. See the section on quantum computing for a list of rotation codes.

psi = (1,0,0,0)

rotate(psi,H,0)
1

21/2

1
21/2

0

0

run(x)

Run script x where x evaluates to a filename string. Useful for importing function libraries.

run("/Users/heisenberg/EVA2.txt")

For Eigenmath installed from the Mac App Store, run files need to be put in the directory
~/Library/Containers/eigenmath/Data/ and the filename does not require a path.

run("EVA2.txt")

sgn(x)

Returns the sign of x if x is a real number.

sgn(0)

0

sgn(1/2)

1

sgn(-1/2)

−1

sgn(-x)

sgn(−x)

46

simplify(x)

Returns expression x in a simpler form.

simplify(sin(x)^2 + cos(x)^2)

1

sin(x)

Returns the sine of x.

sin(pi/4)

1

21/2

sinh(x)

Returns the hyperbolic sine of x.

expform(sinh(x))

−1
2
exp(−x) + 1

2
exp(x)

sqrt(x)

Returns the square root of x.

sqrt(10!)

720 71/2

stop

In a script, it does what it says.

sum(i, j, k, f)

For i equals j through k evaluate f . Returns the sum of all f .

sum(j,1,5,x^j)

x5 + x4 + x3 + x2 + x

The original value of i is restored after sum completes. If symbol i is used for index variable
i then the imaginary unit is overridden in the scope of sum.

47

sum(y)

Returns the sum of components of y.

y = (1,2,3,4)

sum(y)

10

tan(x)

Returns the tangent of x.

simplify(tan(x) - sin(x)/cos(x))

0

tanh(x)

Returns the hyperbolic tangent of x.

expform(tanh(x))

− 1

exp(2x) + 1
+

exp(2x)

exp(2x) + 1

test(a, b, c, d, . . .)

If argument a is true (nonzero) then b is returned, else if c is true then d is returned, etc. If the
number of arguments is odd then the final argument is returned if all else fails. Expressions
can include the relational operators =, ==, <, <=, >, >=. Use the not function to test for
inequality. (The equality operator == is available for contexts in which = is the assignment
operator.)

A = 1

B = 1

test(A=B,"yes","no")

yes

tgamma(x)

Returns the Gamma function of x if x is a real number.

tgamma(4)

6

48

trace

Set trace=1 in a script to print the script as it is evaluated. Useful for debugging.

trace = 1

Note: The contract function is used to obtain the trace of a matrix.

transpose(a, i, j)

Returns the transpose of tensor a with respect to indices i and j. If i and j are omitted then
1 and 2 are used. Hence a matrix can be transposed with a single argument.

A = ((a,b),(c,d))

transpose(A)[
a c

b d

]

Note: The argument list can be extended for multiple transpose operations. Arguments
are evaluated from left to right. For example, transpose(A,1,2,2,3) is equivalent to
transpose(transpose(A,1,2),2,3)

tty

Set tty=1 to show results in string format. Set tty=0 to turn off. Can be useful when
displayed results exceed window size.

tty = 1

(x + 1)^2

x^2 + 2 x + 1

unit(n)

Returns an n by n identity matrix.

unit(3)1 0 0

0 1 0

0 0 1

49

zero(a, b, . . .)

Returns a null tensor with dimensions a, b, etc.

zero(2,3,3)

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

50

21 Tricks

1. Use == to test for equality. In effect, A==B is equivalent to simplify(A-B)==0.

2. In a script, line breaking is allowed where the scanner needs something to complete an
expression. For example, the scanner will automatically go to the next line after an
operator.

3. Setting trace=1 in a script causes each line to be printed just before it is evaluated.
Useful for debugging.

4. The last result is stored in symbol last.

5. Use contract(A) to get the mathematical trace of matrix A.

6. Use binding(s) to get the unevaluated binding of symbol s.

7. Use s=quote(s) to clear symbol s.

8. Use float(pi) to get the floating point value of π. Set pi=float(pi) to evaluate
expressions with a numerical value for π. Set pi=quote(pi) to make π symbolic
again.

9. Use e=exp(1) to assign the natural number e to symbol e.

10. Assign strings to unit names so they are printed normally. For example, setting
meter="meter" causes symbol meter to be printed as meter instead of meter.

11. Use expsin and expcos instead of sin and cos. Trigonometric simplifications oc-
cur automatically when exponentials are used. See also expform for converting an
expression to exponential form.

12. Use rect(expform(f)) to maybe find a new form of trigonometric expression f.

f = cos(theta/2)^2

rect(expform(f))

1
2
cos(θ) + 1

2

13. Complex number functions conj, mag, etc. treat undefined symbols as representing real
numbers. To define symbols that represent complex numbers, use separate symbols for
the real and imaginary parts.

z = x + i y

conj(z) z

x2 + y2

51

z = A exp(i theta)

conj(z) z

A2

14. Use mag for component magnitude, abs for vector magnitude.

y = (a, -b)

mag(y)[
a
b

]
abs(y)

[a2 + b2]
1/2

15. Use draw(y[floor(x)],x) to plot the values of vector y.

y = (1,2,3,4)

draw(y[floor(x)],x)

52

16. The following example demonstrates some eval tricks. (See exercise 4-10 of Quantum
Mechanics by Richard Fitzpatrick.)

Let

ψ =
ϕ1 + ϕ2

2
exp

(
−iE1t

ℏ

)
+
ϕ1 − ϕ2

2
exp

(
−iE2t

ℏ

)
where ϕ1 and ϕ2 are orthogonal. Let operator A have the following eigenvalues.

Aϕ1 = a1ϕ1

Aϕ2 = a2ϕ2

Verify that

⟨A⟩ =
∫
ψ∗Aψ dx =

a1 + a2
2

+
a1 − a2

2
cos

(
(E1 − E2)t

ℏ

)

Because ϕ1 and ϕ2 are normalized we have
∫
ϕ∗
1ϕ1 dx = 1 and

∫
ϕ∗
2ϕ2 dx = 1. By

orthogonality we have
∫
ϕ∗
1ϕ2 dx = 0. Hence the integral can be accomplished with

eval.

phi1 = r1(x) exp(i theta1(x)) -- note that conj(phi1) phi1 == r1(x)^2

phi2 = r2(x) exp(i theta2(x)) -- note that conj(phi2) phi2 == r2(x)^2

psi = 1/2 (phi1 + phi2) exp(-i E1 t / hbar) +

1/2 (phi1 - phi2) exp(-i E2 t / hbar)

A(f) = eval(f, phi1, a1 phi1, phi2, a2 phi2) -- eigenvalues

f = conj(psi) A(psi)

Abar = eval(f, r1(x)^2, 1, r2(x)^2, 1, r1(x) r2(x), 0) -- integral

check(Abar == (a1 + a2) / 2 + (a1 - a2) / 2 cos((E1 - E2) t / hbar))

"ok"

53

