"Exercise 6.9" u = (1,0) d = (0,1) uu = kronecker(u,u) ud = kronecker(u,d) du = kronecker(d,u) dd = kronecker(d,d) sigmaz = ((1,0),(0,-1)) sigmax = ((0,1),(1,0)) sigmay = ((0,-i),(i,0)) tauz = ((1,0),(0,-1)) taux = ((0,1),(1,0)) tauy = ((0,-i),(i,0)) I = ((1,0),(0,1)) sigmaz = kronecker(sigmaz,I) sigmax = kronecker(sigmax,I) sigmay = kronecker(sigmay,I) tauz = kronecker(I,tauz) taux = kronecker(I,taux) tauy = kronecker(I,tauy) S = (ud - du) / sqrt(2) -- singlet state T1 = (ud + du) / sqrt(2) T2 = (uu + dd) / sqrt(2) T3 = (uu - dd) / sqrt(2) "Verify eigenvalues" check(dot(sigmax,taux,S) == -S) check(dot(sigmay,tauy,S) == -S) check(dot(sigmaz,tauz,S) == -S) check(dot(sigmax,taux,T1) == T1) check(dot(sigmay,tauy,T1) == T1) check(dot(sigmaz,tauz,T1) == -T1) check(dot(sigmax,taux,T2) == T2) check(dot(sigmay,tauy,T2) == -T2) check(dot(sigmaz,tauz,T2) == T2) check(dot(sigmax,taux,T3) == -T3) check(dot(sigmay,tauy,T3) == T3) check(dot(sigmaz,tauz,T3) == T3) H = dot(sigmax,taux) + dot(sigmay,tauy) + dot(sigmaz,tauz) check(dot(H,S) == -3 S) check(dot(H,T1) == T1) check(dot(H,T2) == T2) check(dot(H,T3) == T3) "ok"
Run