"Exercise 6.10" u = (1,0) d = (0,1) uu = kronecker(u,u) ud = kronecker(u,d) du = kronecker(d,u) dd = kronecker(d,d) sigmaz = ((1,0),(0,-1)) sigmax = ((0,1),(1,0)) sigmay = ((0,-i),(i,0)) tauz = ((1,0),(0,-1)) taux = ((0,1),(1,0)) tauy = ((0,-i),(i,0)) I = ((1,0),(0,1)) sigmaz = kronecker(sigmaz,I) sigmax = kronecker(sigmax,I) sigmay = kronecker(sigmay,I) tauz = kronecker(I,tauz) taux = kronecker(I,taux) tauy = kronecker(I,tauy) sing = (ud - du) / sqrt(2) T1 = (ud + du) / sqrt(2) T2 = (uu + dd) / sqrt(2) T3 = (uu - dd) / sqrt(2) H = dot(sigmax,taux) + dot(sigmay,tauy) + dot(sigmaz,tauz) H = 1/2 omega H H I = unit(4) "Characteristic polynomial" p = det(H - lambda I) p "Verify eigenvalues" check(eval(p,lambda,-3 omega / 2) == 0) check(eval(p,lambda,omega / 2) == 0) "ok" "Verify eigenvectors" check(dot(H,sing) == -3/2 omega sing) check(dot(H,T1) == 1/2 omega T1) check(dot(H,T2) == 1/2 omega T2) check(dot(H,T3) == 1/2 omega T3) "ok" "Verify other formulas" check(uu = (T2 + T3) / sqrt(2)) check(ud = (T1 + sing) / sqrt(2)) check(du = (T1 - sing) / sqrt(2)) check(dd = (T2 - T3) / sqrt(2)) check(dot(H,uu) == 1/2 omega uu) check(dot(H,ud) == omega du - 1/2 omega ud) check(dot(H,du) == omega ud - 1/2 omega du) check(dot(H,dd) == 1/2 omega dd) "ok"
Run