Tricks

1. Use $==$ to test for equality. In effect, $A==B$ is equivalent to simplify $(A-B)==0$.
2. In a script, line breaking is allowed where the scanner needs something to complete an expression. For example, the scanner will automatically go to the next line after an operator.
3. Setting trace=1 in a script causes each line to be printed just before it is evaluated. Useful for debugging.
4. The last result is stored in symbol last.
5. Use contract(A) to get the mathematical trace of matrix A.
6. Use binding(s) to get the unevaluated binding of symbol s.
7. Use s=quote(s) to clear symbol s.
8. Use float(pi) to get the floating point value of π. Set $\mathrm{pi}=\mathrm{float}(\mathrm{pi})$ to evaluate expressions with a numerical value for π. Set pi=quote(pi) to make π symbolic again.
9. Assign strings to unit names so they are printed normally. For example, setting meter="meter" causes the symbol meter to be printed as meter instead of $m_{\text {eter }}$.
10. Use expsin and expcos instead of sin and cos. Trigonometric simplifications occur automatically when exponentials are used.
11. The following exercise ${ }^{1}$ demonstrates some eval tricks. Let

$$
\psi=\frac{\phi_{1}+\phi_{2}}{2} \exp \left(-\frac{i E_{1} t}{\hbar}\right)+\frac{\phi_{1}-\phi_{2}}{2} \exp \left(-\frac{i E_{2} t}{\hbar}\right)
$$

where ϕ_{1} and ϕ_{2} are orthogonal and

$$
\begin{aligned}
A \phi_{1} & =a_{1} \phi_{1} \\
A \phi_{2} & =a_{2} \phi_{2}
\end{aligned}
$$

Verify that

$$
\langle A\rangle=\int \psi^{*} A \psi d x=\frac{a_{1}+a_{2}}{2}+\frac{a_{1}-a_{2}}{2} \cos \left(\frac{\left(E_{1}-E_{2}\right) t}{\hbar}\right)
$$

[^0]```
psi = (phi1 + phi2) / 2 exp(-i E1 t / hbar) +
 (phi1 - phi2) / 2 exp(-i E2 t / hbar)
Apsi = eval(psi, phi1, a1 phi1, phi2, a2 phi2) -- eigenvalues
A = conj(psi) Apsi
A = eval(A, phi1^2, 1, phi2^2, 1, phi1 phi2, 0) -- delta function
A == (a1 + a2) / 2 + (a1 - a2) / 2 cos((E1 - E2) t / hbar)
```


[^0]:    ${ }^{1}$ See exercise 4-10 of Quantum Mechanics by Richard Fitzpatrick.

