Syntax

Math	Eigenmath	Comment
$a=b$	$\mathrm{a}=\mathrm{b}$	test for equality
$-a$	-a	negation
$a+b$	$a+b$	addition
$a-b$	$a-b$	subtraction
$a b$	a b	multiplication, also a*b
$\frac{a}{b}$	a/b	division
$\frac{a}{b c}$	a/b/c	division is left-associative
a^{2}	$\mathrm{a}^{\wedge} 2$	power
\sqrt{a}	sqrt (a)	square root, also a^(1/2)
$a(b+c)$	a (b+c)	space is required
$f(a)$	f(a)	function
$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$	($\mathrm{a}, \mathrm{b}, \mathrm{c}$)	vector
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$	((a, b) , (c, d))	matrix
$F^{1}{ }_{2}$	$\mathrm{F}[1,2]$	tensor component access
	"hello, world"	string literal
π	pi	
e	$\exp (1)$	natural number

Arithmetic operators have the expected precedence of multiplication and division before addition and subtraction. Subexpressions in parentheses have highest precedence.

Parentheses are required around negative exponents. For example,
$10^{\wedge}(-3)$
instead of
$10^{\wedge}-3$

The reason for this is that the binding of the negative sign is not always obvious. For example, consider
$x^{\wedge}-1 / 2$
It is not clear whether the exponent should be -1 or $-1 / 2$. Hence the following syntax is required.
$x^{\wedge}(-1 / 2)$
In general, parentheses are always required when the exponent is an expression. For example, $\mathrm{x}^{\wedge} 1 / 2$ is evaluated as $\left(x^{1}\right) / 2$ which is probably not the desired result.
$x^{\wedge} 1 / 2$
$\frac{1}{2} x$
Using $x^{\wedge}(1 / 2)$ yields the desired result.
$x^{\wedge}(1 / 2)$
$x^{1 / 2}$

