Symbols

Symbols are defined with an equals sign.
$\mathrm{N}=212^{\wedge} 17$

No result is printed when a symbol is defined. To see the value of a symbol, just evaluate it.
N
$N=3529471145760275132301897342055866171392$
Symbols can have more that one letter. Everything after the first letter is displayed as a subscript.
$N A=6.0221410^{\wedge} 23$
NA
$N_{A}=6.02214 \times 10^{23}$
A symbol can be the name of a Greek letter.
$x i=1 / 2$
xi
$\xi=\frac{1}{2}$
Greek letters can appear in subscripts.
Amu $=2.0$
Amu
$A_{\mu}=2.0$
The following example shows how a symbol is scanned to find Greek letters.
alphamunu = 1
alphamunu
$\alpha_{\mu \nu}=1$
Symbol definitions are evaluated serially until a terminal symbol is reached. The following example sets $A=B$ followed by $B=C$. Then when A is evaluated, the result is C.
$A=B$
$B=C$
A
$A=C$
Although $A=C$ is printed, inside the program the binding of A is still B, as can be seen with the binding function.
binding(A)
B
The quote function returns its argument unevaluated and can be used to clear a symbol. The following example clears A so that its evaluation goes back to being A instead of C.
$\mathrm{A}=$ quote (A)
A

A

