Surface area

Let S be a surface parameterized by x and y. That is, let $S=(x, y, z)$ where $z=f(x, y)$. The tangent lines at a point on S form a tiny parallelogram. The area a of the parallelogram is given by the magnitude of the cross product.

$$
a=\left|\frac{\partial S}{\partial x} \times \frac{\partial S}{\partial y}\right|
$$

By summing over all the parallelograms we obtain the total surface area A. Hence

$$
A=\iint d A=\iint a d x d y
$$

The following example computes the surface area of a unit disk parallel to the $x y$ plane.
$z=2$
S $=(x, y, z)$
$a=\operatorname{abs}(\operatorname{cross}(d(S, x), d(S, y)))$

π
The result is π, the area of a unit circle, which is what we expect. The following example computes the surface area of $z=x^{2}+2 y$ over a unit square.

```
z = x^2 + 2y
S = (x,y,z)
a = abs(cross(d(S,x),d(S,y)))
defint(a,x,0,1,y,0,1)
5
```

The following exercise is from Multivariable Mathematics by Williamson and Trotter, p. 598. Find the area of the spiral ramp defined by

$$
S=\left(\begin{array}{c}
u \cos v \\
u \sin v \\
v
\end{array}\right), \quad 0 \leq u \leq 1, \quad 0 \leq v \leq 3 \pi
$$

```
\(\mathrm{x}=\mathrm{u} \cos (\mathrm{v})\)
\(y=u \sin (v)\)
\(\mathrm{z}=\mathrm{v}\)
S \(=(x, y, z)\)
\(a=\operatorname{circexp}(\operatorname{abs}(\operatorname{cross}(d(S, u), d(S, v))))\)
defint(a,u, 0,1,v,0,3pi)
\(\frac{3 \pi}{2^{1 / 2}}+\frac{3}{2} \pi \log \left(2^{1 / 2}+1\right)\)
float
```

10.8177

