
Quantum computing

A quantum computer can be simulated by applying rotations to a unit vector u ∈ C2n where
C is the set of complex numbers and n is the number of qubits. The dimension is 2n because
a register with n qubits has 2n eigenstates. (Recall that an eigenstate is the output of a
quantum computer.) Quantum operations are “rotations” because they preserve |u| = 1.
Mathematically, a rotation of u is equivalent to the product Ru where R is a 2n×2n matrix.

Eigenstates |j⟩ are represented by the following vectors. (Each vector has 2n elements.)

|0⟩ = (1, 0, 0, . . . , 0)

|1⟩ = (0, 1, 0, . . . , 0)

|2⟩ = (0, 0, 1, . . . , 0)

...

|2n − 1⟩ = (0, 0, 0, . . . , 1)

A quantum computer algorithm is a sequence of rotations applied to the initial state |0⟩. (The
sequence could be combined into a single rotation by associativity of matrix multiplication.)
Let ψf be the final state of the quantum computer after all the rotations have been applied.
Like any other state, ψf is a linear combination of eigenstates.

ψf =
2n−1∑
j=0

cj|j⟩, cj ∈ C, |ψf | = 1

The last step is to measure ψf and get a result. Measurement rotates ψf to an eigenstate
|j⟩. The measurement result is |j⟩. The probability Pj of getting a specific result |j⟩ is

Pj = |cj|2 = cjc
∗
j

Note that if ψf is already an eigenstate then no rotation occurs. (The probability of observing
a different eigenstate is zero.) Since the measurement result is always an eigenstate, the
coefficients cj cannot be observed. However, the same calculation can be run multiple times
to obtain a probability distribution of results. The probability distribution is an estimate of
|cj|2 for each |j⟩ in ψf .

Unlike a real quantum computer, in a simulation the final state ψf , or any other state, is
available for inspection. Hence there is no need to simulate the measurement process. The
probability distribution of the result can be computed directly as

P = ψf ψ
∗
f

where ψf ψ
∗
f is the Hadamard (element-wise) product of vector ψf and its complex conjugate.

Result P is a vector such that Pj is the probability of eigenstate |j⟩ and

2n−1∑
j=0

Pj = 1

1



Note: Eigenmath index numbering begins with 1 hence P[1] is the probability of |0⟩, P[2]
is the probability of |1⟩, etc.

The Eigenmath function rotate(u, s, k, . . .) rotates vector u and returns the result. Vector
u is required to have 2n elements where n is an integer from 1 to 15. Arguments s, k, . . . are
a sequence of rotation codes where s is an upper case letter and k is a qubit number from 0
to n− 1. Rotations are evaluated from left to right. The available rotation codes are

C, k Control prefix
H, k Hadamard
P, k, ϕ Phase modifier (use ϕ = 1

4
π for T rotation)

Q, k Quantum Fourier transform
V, k Inverse quantum Fourier transform
W,k, j Swap bits
X, k Pauli X
Y, k Pauli Y
Z, k Pauli Z

Control prefix C, k modifies the next rotation code so that it is a controlled rotation with
k as the control qubit. Use two or more prefixes to specify multiple control qubits. For
example, C, k, C, j,X,m is a Toffoli rotation. Fourier rotations Q, k and V, k are applied to
qubits 0 through k. (Q and V ignore any control prefix.)

List of rotate(u, s, k, . . .) error codes:

1 Argument u is not a vector or does not have 2n elements where n = 1, 2, . . . , 15.

2 Unexpected end of argument list (i.e., missing argument).

3 Bit number format error or range error.

4 Unknown rotation code.

Example: Verify the following truth table for quantum operator CNOT where qubit 0 is the
control and qubit 1 is the target. (Target is inverted when control is set.)

Target Control Output
0 0 00
0 1 11
1 0 10
1 1 01

U(psi) = rotate(psi,C,0,X,1) -- CNOT, control 0, target 1

ket00 = (1,0,0,0)

ket01 = (0,1,0,0)

ket10 = (0,0,1,0)

2



ket11 = (0,0,0,1)

U(ket00) == ket00

U(ket01) == ket11

U(ket10) == ket10

U(ket11) == ket01

Here are some useful Eigenmath code snippets for setting up a simulation and computing
the result.

1. Initialize ψ = |0⟩.

n = 4 -- number of qubits (example)

N = 2^n -- number of eigenstates

psi = zero(N)

psi[1] = 1

2. Compute the probability distribution for state ψ.

P = psi conj(psi)

Hence

P[1] = probability that |0⟩ will be the result

P[2] = probability that |1⟩ will be the result

P[3] = probability that |2⟩ will be the result

...

P[N] = probability that |N − 1⟩ will be the result

3. (Only for macOS) Draw a probability distribution.

xrange = (0,N)

yrange = (0,1)

draw(P[ceiling(x)],x)

4. Compute an expectation value.

sum(k,1,N, (k - 1) P[k])

5. Make the high order qubit “don’t care.”

for(k,1,N/2, P[k] = P[k] + P[k + N/2])

Hence for N = 16

P[1] = probability that the result will be |0⟩ or |8⟩
P[2] = probability that the result will be |1⟩ or |9⟩
P[3] = probability that the result will be |2⟩ or |10⟩
...

P[8] = probability that the result will be |7⟩ or |15⟩

3


