Linear algebra

$\operatorname{dot}(\mathrm{a}, \mathrm{b}, \ldots$) returns the inner product of vectors, matrices, and higher rank tensors. Also known as the matrix product. Arguments are evaluated from right to left for maximum efficiency when the rightmost argument is a vector.

Example 1. Compute the product $A X$ for

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad X=\binom{x_{1}}{x_{2}}
$$

$A=((a 11, a 12),(a 21, a 22))$
$X=(x 1, x 2)$
$\operatorname{dot}(A, X)$
$\left[\begin{array}{l}a_{11} x_{1}+a_{12} x_{2} \\ a_{21} x_{1}+a_{22} x_{2}\end{array}\right]$
Example 2. Solve for vector X in $A X=B$.

$$
\begin{aligned}
& A=((3,7),(1,-9)) \\
& B=(16,-22) \\
& X=\operatorname{dot}(\operatorname{inv}(A), B) \\
& X
\end{aligned}
$$

Example 3. Show that

$$
A^{-1}=\frac{\operatorname{adj} A}{\operatorname{det} A}
$$

$A=((a, b),(c, d))$
$\operatorname{inv}(\mathrm{A})==\operatorname{adj}(\mathrm{A}) / \operatorname{det}(\mathrm{A})$
1

