Function definitions

The syntax for defining functions is

$$
\text { function-name }(\text { arg-list })=\operatorname{expr}
$$

where arg-list is a comma separated list of zero to nine symbols that receive arguments. Unlike symbol definitions, expr is not evaluated when function-name is defined. Instead, expr is evaluated when function-name is used in a subsequent computation. The scope of function arguments is the function definition expr.

Function definitions cannot be nested. In other words, function definition expr cannot contain another function definition.

The following example defines a sinc function and evaluates it at $\pi / 2$.

```
f(x) = sin(x)/x
f(pi/2)
\frac{2}{\pi}
```

After a user function is defined, expr can be recalled using the binding function.
binding(f)
$\frac{\sin (x)}{x}$
To define a local symbol for use inside expr, extend the argument list. In the following example, argument y is used as a local symbol. Note that function L is called without supplying an argument for y.

```
L(f,n,y) = eval(exp(y) / n! d(exp(-y) y^n, y, n), y, f)
L(cos(x),2)
\frac{1}{2}}\operatorname{cos}(x\mp@subsup{)}{}{2}-2\operatorname{cos}(x)+
```

Sometimes it is necessary to evauate an argument at a particular value. Use eval to evaluate function arguments inside expr.
$h(f, x, a)=\operatorname{abs}(e v a l(f, x, a))$
$h(\cos (y), y, 0)$

1

