## Feature index

abs $(x)$
Returns the absolute value or vector length of $x$.
$X=(x, y, z)$
abs (X)
$\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$
$\operatorname{adj}(m)$
Returns the adjunct of matrix $m$. Adjunct is equal to determinant times inverse.
$A=((a, b),(c, d))$
$\operatorname{adj}(A)==\operatorname{det}(A) \operatorname{inv}(A)$
1
$\operatorname{and}(a, b, \ldots)$
Returns 1 if all arguments are true (nonzero). Returns 0 otherwise.

```
and(1=1,2=2)
```

1

## $\arccos (x)$

Returns the arc cosine of $x$.

```
arccos(1/2)
\frac{1}{3}}
arccosh(x)
```

Returns the arc hyperbolic cosine of $x$.

## $\arcsin (x)$

Returns the arc sine of $x$.

```
arcsin(1/2)
```

$\frac{1}{6} \pi$

## $\operatorname{arcsinh}(x)$

Returns the arc hyperbolic sine of $x$.

## $\arctan (y, x)$

Returns the arc tangent of $y$ over $x$. If $x$ is omitted then $x=1$ is used.

```
arctan(1,0)
\frac{1}{2}}
```

$\operatorname{arctanh}(x)$
Returns the arc hyperbolic tangent of $x$.
$\arg (z)$
Returns the angle of complex $z$.
$\arg (2-3 i)$
$\arctan (-3,2)$

## binding $(s)$

The result of evaluating a symbol can differ from the symbol's binding. For example, the result may be expanded. The binding function returns the actual binding of a symbol.

```
p = quote((x + 1) ^2)
p
p=\mp@subsup{x}{}{2}+2x+1
binding(p)
(x+1) 2
```

ceiling $(x)$

Returns the smallest integer greater than or equal to $x$.
ceiling(1/2)
1

## check $(x)$

If $x$ is true (nonzero) then continue, else stop. Expression $x$ can include the relational operators $=,==,<,<=,>,>=$. Use the not function to test for inequality.
$A=\exp (i p i)$
B $=-1$
check (A == B) -- stop here if $A$ not equal to $B$

## choose ( $n, k$ )

Returns the binomial coefficient $n$ choose $k$.
choose $(52,5)$-- number of poker hands
2598960

## $\operatorname{circexp}(x)$

Returns expression $x$ with circular and hyperbolic functions converted to exponentials.
$\operatorname{circexp}(\cos (x)+i \sin (x))$
$\exp (i x)$

## clear

Clears all symbol definitions.

## $\operatorname{clock}(z)$

Returns complex $z$ in polar form with base of negative 1 instead of $e$.

```
clock(2 - 3i)
13 1/2 (-1) arctan(-3,2)/\pi
```

$\operatorname{cofactor}(m, i, j)$

Returns the cofactor of matrix $m$ for row $i$ and column $j$.

```
A = ((a,b),(c,d))
cofactor(A,1,2) == adj(A)[2,1]
```

1

```
conj(z)
```

Returns the complex conjugate of $z$.
conj(2-3i)
$2+3 i$
contract $(a, i, j)$
Returns tensor $a$ summed over indices $i$ and $j$. If $i$ and $j$ are omitted then 1 and 2 are used. The expression contract (m) computes the trace of matrix $m$.
$A=((a, b),(c, d))$
contract(A)
$a+d$

## $\cos (x)$

Returns the cosine of $x$.

```
cos(pi/4)
\frac{1}{\mp@subsup{2}{}{1/2}}
```

$\cosh (x)$

Returns the hyperbolic cosine of $x$.

```
circexp(cosh(x))
\frac{1}{2}}\operatorname{exp}(-x)+\frac{1}{2}\operatorname{exp}(x
```

$\operatorname{cross}(u, v)$

Returns the cross product of vectors $u$ and $v$.
$\operatorname{curl}(v)$
Returns the curl of vector $v$ with respect to symbols $\mathrm{x}, \mathrm{y}$, and z .
$\mathbf{d}(f, x, \ldots)$
Returns the partial derivative of $f$ with respect to $x$ and any additional arguments.

```
\(d(\sin (x), x)\)
\(\cos (x)\)
```

Multiderivatives are computed by extending the argument list.
$d(\sin (x), x, x)$
$-\sin (x)$
A numeric argument $n$ computes the $n$th derivative with respect to the previous symbol.
$d(\sin (x y), x, 2, y, 2)$
$x^{2} y^{2} \sin (x y)-4 x y \cos (x y)-2 \sin (x y)$
Argument $f$ can be a tensor of any rank. Argument $x$ can be a vector. When $x$ is a vector the result is the gradient of $f$.

```
F = (f(),g(),h())
X = (x,y,z)
d(F,X)
[\begin{array}{lll}{\textrm{d}(f(),x)}&{\textrm{d}(f(),y)}&{\textrm{d}(f(),z)}\\{\textrm{d}(g(),x)}&{\textrm{d}(g(),y)}&{\textrm{d}(g(),z)}\\{\textrm{d}(h(),x)}&{\textrm{d}(h(),y)}&{\textrm{d}(h(),z)}\end{array}]
```

Symbol d can be used as a variable name. Doing so does not conflict with function d.
Symbol d can be redefined as a different function. The function derivative, a synonym for d, can be used to obtain a partial derivative.

## $\operatorname{defint}(f, x, a, b)$

Returns the definite integral of $f$ with respect to $x$ evaluated from $a$ to $b$. The argument list can be extended for multiple integrals as shown in the following example.

```
f = (1 + cos(theta)^2) sin(theta)
-- integrate over theta then over phi
defint(f, theta, 0, pi, phi, 0, 2 pi)
\frac{16}{3}\pi
```


## denominator $(x)$

Returns the denominator of expression $x$.

```
denominator(a/b)
b
```


## $\operatorname{det}(m)$

Returns the determinant of matrix $m$.

```
A = ((a,b), (c,d))
det(A)
ad-bc
dim}(a,n
```

Returns the dimension of the $n$th index of tensor $a$. Index numbering starts with 1 .
$A=((1,2),(3,4),(5,6))$
$\operatorname{dim}(A, 1)$
3

## $\operatorname{div}(v)$

Returns the divergence of vector $v$ with respect to symbols $\mathrm{x}, \mathrm{y}$, and z .
$\operatorname{do}(a, b, \ldots)$
Evaluates each argument from left to right. Returns the result of the final argument.
do $(A=1, B=2, A+B)$
3
$\operatorname{dot}(a, b, \ldots)$
Returns the dot product of vectors, matrices, and tensors. Also known as the matrix product.
Arguments are evaluated from right to left. The following example solves for $X$ in $A X=B$.

```
A = ((1, 2), (3,4))
B = (5,6)
X = dot(inv(A),B)
X
[\begin{array}{c}{-4}\\{\frac{9}{2}}\end{array}]
```


## eigenvec $(m)$

Returns eigenvectors for matrix $m$. Matrix $m$ is required to be numerical, real, and symmetric. The return value is a matrix with each column an eigenvector. Eigenvalues are obtained as shown.

```
A = ((1,2,3),(2,6,4),(3,4,5))
Q = eigenvec(A)
D = dot(transpose(Q),A,Q) -- eigenvalues on the diagonal of D
dot(Q,D,transpose(Q))
\(\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 6 & 4 \\ 3 & 4 & 5\end{array}\right]\)
eval(f,x,a,y,b,\ldots)
```

Returns $f$ evaluated with $x$ replaced by $a, y$ replaced by $b$, etc. All arguments can be expressions.

```
f = sqrt(x^2 + y^2)
eval(f,x,3,y,4)
```

5

In the following example, eval is used to replace x with $\cos$ (theta).

```
-- associated legendre of cos theta
P(l,m,x) = test(m < 0, (-1)^m (l + m)! / (l - m)! P(l,-m),
    1 / (2^l l!) sin(theta)^m *
    eval(d((x^2 - 1)^l, x, l + m), x, cos(theta)))
P(2,-1)
-\frac{1}{2}\operatorname{cos}(0)\operatorname{sin}(0)
exp(x)
```

Returns the exponential of $x$.
$\exp (\mathrm{i} p \mathrm{p})$
$-1$

## $\operatorname{expcos}(z)$

Returns the cosine of $z$ in exponential form.

```
expcos(z)
\frac{1}{2}}\operatorname{exp}(iz)+\frac{1}{2}\operatorname{exp}(-iz
```


## $\operatorname{expcosh}(z)$

Returns the hyperbolic cosine of $z$ in exponential form.

```
expcosh(z)
\frac{1}{2}}\operatorname{exp}(-z)+\frac{1}{2}\operatorname{exp}(z
expsin}(z
```

Returns the sine of $z$ in exponential form.
expsin(z)
$-\frac{1}{2} i \exp (i z)+\frac{1}{2} i \exp (-i z)$

## $\operatorname{expsinh}(z)$

Returns the hyperbolic sine of $z$ in exponential form.

```
expsinh(z)
-\frac{1}{2}}\operatorname{exp(-z)+\frac{1}{2}}\operatorname{exp}(z
```


## $\operatorname{exptan}(z)$

Returns the tangent of $z$ in exponential form.

```
exptan(z)
\frac{i}{\operatorname{exp}(2iz)+1}-\frac{i\operatorname{exp}(2iz)}{\operatorname{exp}(2iz)+1}
```


## exptanh $(z)$

Returns the hyperbolic tangent of $z$ in exponential form.

```
exptanh(z)
-}\frac{1}{\operatorname{exp}(2z)+1}+\frac{\operatorname{exp}(2z)}{\operatorname{exp}(2z)+1
```


## factorial ( $n$ )

Returns the factorial of $n$. The expression n ! can also be used.
$20!$
2432902008176640000

## float $(x)$

Returns expression $x$ with rational numbers and integers converted to floating point values. The symbol pi and the natural number are also converted.
float(212^17)
$3.52947 \times 10^{39}$
floor $(x)$
Returns the largest integer less than or equal to $x$.
floor(1/2)

0
$\operatorname{for}(i, j, k, a, b, \ldots)$
For $i$ equals $j$ through $k$ evaluate $a, b$, etc.
for ( $k, 1,3, A=k, \operatorname{print}(A))$
$A=1$
$A=2$
$A=3$
Note: The original value of $i$ is restored after for completes. If symbol $i$ is used for index variable $i$ then the imaginary unit is overridden in the scope of for.

## $\operatorname{grad}(f)$

Returns the gradient $d(f,(x, y, z))$.
$\operatorname{grad}(f())$
$\left[\begin{array}{l}\mathrm{d}(f(), x) \\ \mathrm{d}(f(), y) \\ \mathrm{d}(f(), z)\end{array}\right]$

## hadamard $(a, b, \ldots)$

Returns the Hadamard (element-wise) product.

```
X = (a,b,c)
hadamard(X,X)
[l}\mp@subsup{a}{}{2
i
```

Symbol i is initialized to the imaginary unit $\sqrt{-1}$.
$\exp (\mathrm{i} p \mathrm{p})$
-1
Note: It is ok to clear or redefine $i$ and use the symbol for something else.

## $\operatorname{imag}(z)$

Returns the imaginary part of complex $z$.
imag (2-3i)
$-3$

## infixform $(x)$

Converts expression $x$ to a string and returns the result.

```
p = (x + 1) ^2
infixform(p)
x^2 + 2 x + 1
inner (a,b,\ldots)
```

Returns the inner product of vectors, matrices, and tensors. Also known as the matrix product.

$$
\begin{aligned}
& \mathrm{A}=((\mathrm{a}, \mathrm{~b}),(\mathrm{c}, \mathrm{~d})) \\
& \mathrm{B}=(\mathrm{x}, \mathrm{y}) \\
& \text { inner }(\mathrm{A}, \mathrm{~B}) \\
& {\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]}
\end{aligned}
$$

Note: inner and dot are the same function.

## $\operatorname{integral}(f, x)$

Returns the integral of $f$ with respect to $x$.

```
integral(x^2,x)
\frac{1}{3}}\mp@subsup{x}{}{3
inv(m)
```

Returns the inverse of matrix $m$.
$A=((1,2),(3,4))$
$\operatorname{inv}(\mathrm{A})$
$\left[\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]$
j
Set $\mathrm{j}=$ sqrt $(-1)$ to use j for the imaginary unit instead of i .
$j=\operatorname{sqrt}(-1)$
1/sqrt(-1)
$-j$
$\operatorname{kronecker}(a, b, \ldots)$
Returns the Kronecker product of vectors and matrices.
$A=((1,2),(3,4))$
$B=((a, b),(c, d))$
kronecker (A, B)
$\left[\begin{array}{cccc}a & b & 2 a & 2 b \\ c & d & 2 c & 2 d \\ 3 a & 3 b & 4 a & 4 b \\ 3 c & 3 d & 3 c & 4 d\end{array}\right]$

## last

The result of the previous calculation is stored in last.
$212^{\wedge} 17$
3529471145760275132301897342055866171392
last^(1/17)

212
Symbol last is an implied argument when a function has no argument list.
$212^{\wedge} 17$
3529471145760275132301897342055866171392
float
$3.52947 \times 10^{39}$
$\log (x)$
Returns the natural logarithm of $x$.
$\log \left(x^{\wedge} y\right)$
$y \log (x)$

## $\operatorname{mag}(z)$

Returns the magnitude of complex $z$. Function mag treats undefined symbols as real while abs does not.
$\operatorname{mag}(x+i y)$
$\left(x^{2}+y^{2}\right)^{1 / 2}$
$\operatorname{minor}(m, i, j)$
Returns the minor of matrix $m$ for row $i$ and column $j$.
$\mathrm{A}=((1,2,3),(4,5,6),(7,8,9))$
minor $(A, 1,1)==\operatorname{det}($ minormatrix $(A, 1,1))$
1

## minormatrix $(m, i, j)$

Returns a copy of matrix $m$ with row $i$ and column $j$ removed.

```
A = ((1,2,3),(4,5,6),(7,8,9))
minormatrix(A,1,1)
[\begin{array}{ll}{5}&{6}\\{8}&{9}\end{array}]
```


## noexpand $(x)$

Evaluates expression $x$ without expanding products of sums.

```
noexpand((x + 1)^2 / (x + 1))
x+1
not}(x
```

Returns 0 if $x$ is true (nonzero). Returns 1 otherwise.

```
not(1=1)
```

0

## $\operatorname{nroots}(p, x)$

Returns the approximate roots of polynomials with real or complex coefficients. Multiple roots are returned as a vector.
$p=x^{\wedge} 5-1$
$\operatorname{nroots}(p, x)$
$\left[\begin{array}{c}1 \\ -0.809017+0.587785 i \\ -0.809017-0.587785 i \\ 0.309017+0.951057 i \\ 0.309017-0.951057 i\end{array}\right]$
numerator $(x)$
Returns the numerator of expression $x$.

```
numerator(a/b)
```

$a$
$\operatorname{or}(a, b, \ldots)$
Returns 1 if at least one argument is true (nonzero). Returns 0 otherwise.
or $(1=1,2=2)$
1
outer $(a, b, \ldots)$
Returns the outer product of vectors, matrices, and tensors.
$A=(a, b, c)$
$B=(x, y, z)$
outer (A, B)
$\left[\begin{array}{ccc}a x & a y & a z \\ b x & b y & b z \\ c x & c y & c z\end{array}\right]$
pi
Symbol for $\pi$.
$\exp (i \operatorname{pi})$
$-1$

## $\operatorname{polar}(z)$

Returns complex $z$ in polar form.
polar (x - i y)
$\left(x^{2}+y^{2}\right)^{1 / 2} \exp (i \arctan (-y, x))$

## power

Use ^ to raise something to a power. Use parentheses for negative powers.

```
x^(-2)
```

$\frac{1}{x^{2}}$

```
\(\operatorname{print}(a, b, \ldots)\)
```

Evaluate expressions and print the results. Useful for printing from inside a for loop.

```
for(j,1,3,print(j))
j=1
j=2
j=3
```

$\operatorname{product}(i, j, k, f)$

For $i$ equals $j$ through $k$ evaluate $f$. Returns the product of all $f$.
product $(\mathrm{j}, 1,3, \mathrm{x}+\mathrm{j})$
$x^{3}+6 x^{2}+11 x+6$
The original value of $i$ is restored after product completes. If symbol i is used for index variable $i$ then the imaginary unit is overridden in the scope of product.

## product ( $y$ )

Returns the product of components of $y$.

```
y = (1,2,3,4)
product(y)
```

24

## quote $(x)$

Returns expression $x$ without evaluating it first.

```
quote((x + 1)^2)
```

$(x+1)^{2}$
$\operatorname{rank}(a)$

Returns the number of indices that tensor $a$ has.

```
A = ((a,b), (c,d))
rank(A)
```


## rationalize $(x)$

Returns expression $x$ with everything over a common denominator.
rationalize $(1 / a+1 / b+1 / 2)$
$\frac{2 a+a b+2 b}{2 a b}$
Note: rationalize returns an unexpanded expression. If the result is assigned to a symbol, evaluating the symbol will expand the result. Use binding to retrieve the unexpanded expression.
$\mathrm{f}=$ rationalize(1/a + 1/b + 1/2)
binding(f)
$\frac{2 a+a b+2 b}{2 a b}$
$\operatorname{real}(z)$
Returns the real part of complex $z$.

```
real(2 - 3i)
```

2

## $\operatorname{rect}(z)$

Returns complex $z$ in rectangular form.
rect (exp(ix))
$\cos (x)+i \sin (x)$
$\operatorname{roots}(p, x)$
Returns the rational roots of a polynomial. Multiple roots are returned as a vector.

```
p = (x + 1) (x - 2)
roots(p,x)
[c-1
```

If no roots are found then nil is returned. A nil result is not printed so the following example uses infixform to print nil as a string.

```
p = x^2 + 1
infixform(roots(p,x))
```

nil

```
rotate(u,s,k,\ldots)
```

Rotates vector $u$ and returns the result. Vector $u$ is required to have $2^{n}$ elements where $n$ is an integer from 1 to 15 . Arguments $s, k, \ldots$ are a sequence of rotation codes where $s$ is an upper case letter and $k$ is a qubit number from 0 to $n-1$. Rotations are evaluated from left to right. See the section on quantum computing for a list of rotation codes.

```
psi = (1,0,0,0)
rotate(psi,H,0)
[\frac{1}{\mp@subsup{2}{}{1/2}}]
    \frac{1}{\mp@subsup{2}{}{1/2}}
    0
    0
run(x)
```

Run script $x$ where $x$ evaluates to a filename string. Useful for importing function libraries.

```
run("EVA2.txt")
```

For Eigenmath installed from the Mac App Store, run files need to be put in the directory ~/Library/Containers/eigenmath/Data/

## simplify $(x)$

Returns expression $x$ in a simpler form.

```
simplify(sin(x)^2 + cos(x)^2)
```

1
$\sin (x)$
Returns the sine of $x$.
$\sin (p i / 4)$
$\frac{1}{2^{1 / 2}}$

## $\sinh (x)$

Returns the hyperbolic sine of $x$.
circexp(sinh (x))
$-\frac{1}{2} \exp (-x)+\frac{1}{2} \exp (x)$

## $\operatorname{sqrt}(x)$

Returns the square root of $x$.

```
sqrt(10!)
```

$7207^{1 / 2}$

## stop

In a script, it does what it says.
$\operatorname{sum}(i, j, k, f)$
For $i$ equals $j$ through $k$ evaluate $f$. Returns the sum of all $f$.
$\operatorname{sum}\left(j, 1,5, x^{\wedge} j\right)$
$x^{5}+x^{4}+x^{3}+x^{2}+x$
The original value of $i$ is restored after sum completes. If symbol $i$ is used for index variable $i$ then the imaginary unit is overridden in the scope of sum.

## $\operatorname{sum}(y)$

Returns the sum of components of $y$.

```
y = (1, 2,3,4)
sum(y)
1 0
tan(x)
```

Returns the tangent of $x$.
simplify $(\tan (x)-\sin (x) / \cos (x))$
0

## $\tanh (x)$

Returns the hyperbolic tangent of $x$.
circexp(tanh (x))
$-\frac{1}{\exp (2 x)+1}+\frac{\exp (2 x)}{\exp (2 x)+1}$
$\operatorname{test}(a, b, c, d, \ldots)$
If argument $a$ is true (nonzero) then $b$ is returned, else if $c$ is true then $d$ is returned, etc. If the number of arguments is odd then the final argument is returned if all else fails. Expressions can include the relational operators $=,==,<,<=,>,>=$. Use the not function to test for inequality. (The equality operator $==$ is available for contexts in which $=$ is the assignment operator.)
$\mathrm{A}=1$
B = 1
test(A=B,"yes", "no")
yes

## trace

Set trace $=1$ in a script to print the script as it is evaluated. Useful for debugging.
trace = 1

Note: The contract function is used to obtain the trace of a matrix.

## transpose $(a, i, j)$

Returns the transpose of tensor $a$ with respect to indices $i$ and $j$. If $i$ and $j$ are omitted then 1 and 2 are used. Hence a matrix can be transposed with a single argument.
$A=((a, b),(c, d))$
transpose(A)
$\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$
Note: The argument list can be extended for multiple transpose operations. Arguments are evaluated from left to right. For example, transpose (A,1,2,2,3) is equivalent to transpose (transpose (A, 1, 2) , 2, 3)

## tty

Set tty=1 to show results in string format. Set tty=0 to turn off. Can be useful when displayed results exceed window size.

```
tty = 1
(x+1)^2
x^2 + 2 x + 1
unit(n)
```

Returns an $n$ by $n$ identity matrix.

$$
\begin{aligned}
& \text { unit (3) } \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

```
\(\operatorname{zero}(i, j, \ldots)\)
```

Returns a null tensor with dimensions $i, j$, etc. Useful for creating a tensor and then setting component values.
$\mathrm{A}=\operatorname{zero}(3,3)$
$\operatorname{for}(\mathrm{k}, 1,3, \mathrm{~A}[\mathrm{k}, \mathrm{k}]=\mathrm{k})$
A
$A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$

