## Complex numbers

Symbol i is initialized to $\sqrt{-1}$.
Complex quantities can be entered in either rectangular or polar form.
a + i b
$a+i b$
$\exp (1 / 3$ i pi)
$\exp \left(\frac{1}{3} i \pi\right)$
Converting a complex number to rectangular or polar coordinates causes simplification of mixed forms.
$\mathrm{A}=1+\mathrm{i}$
B $=\operatorname{sqrt}(2) \exp (1 / 4 \mathrm{i} \mathrm{pi})$
A - B
$1+i-2^{1 / 2} \exp \left(\frac{1}{4} i \pi\right)$
rect(last)
0

Rectangular complex quantities, when raised to a power, are multiplied out.
( $\mathrm{a}+\mathrm{i} \mathrm{b})^{\wedge} 2$
$a^{2}-b^{2}+2 i a b$
When $a$ and $b$ are numerical and the power is negative, the evaluation is done as follows.

$$
(a+i b)^{-n}=\left(\frac{a-i b}{(a+i b)(a-i b)}\right)^{n}=\left(\frac{a-i b}{a^{2}+b^{2}}\right)^{n}
$$

Here are a few examples.
1/(2 - i)
$\frac{2}{5}+\frac{1}{5} i$
$(-1+3 i) /(2-i)$
$-1+i$
The absolute value of a complex number returns its magnitude.
abs (3 + 4 i)
5
The imaginary unit can be changed from $i$ to $j$ by defining $j=\sqrt{-1}$.

```
j = sqrt(-1)
sqrt(-4)
```

$2 j$

