Arc length

Let $g(t)$ be a parametric function that draws a curve in \mathbb{R}^{n}. The arc length from $g(a)$ to $g(b)$ is given by

$$
\int_{a}^{b}\left|g^{\prime}(t)\right| d t
$$

where $\left|g^{\prime}(t)\right|$ is the length of the tangent vector at $g(t)$.
Example 1. Find the length of the curve $y=x^{2}$ from $x=0$ to $x=1$.

```
g = (t,t^2)
defint(abs(d(g,t)),t,0,1)
\frac{1}{2}}\mp@subsup{5}{}{1/2}-\frac{1}{4}\operatorname{log}(2)+\frac{1}{4}\operatorname{log}(2\mp@subsup{5}{}{1/2}+4
float
1.47894
```

As expected, the result is greater than $\sqrt{2} \approx 1.414$, the length of a straight line from $(0,0)$ to $(1,1)$.

The following script does a discrete computation of the arc length by dividing the curve into 100 pieces.

```
g(t) = (t,t^2)
h(k) = abs(g(k/100.0) - g((k-1)/100.0))
sum(k,1,100,h(k))
1.47894
```

As expected, the discrete result matches the analytic result.
Example 2. Find the length of the curve $y=x^{3 / 2}$ from the origin to $x=\frac{4}{3}$.

```
g = (t,t^(3/2))
defint(abs(d(g,t)),t,0,4/3)
56
```

