[TSM-R Reference Manual

9634295@gmail.com

Contents

1 Introduction 2
1.1 Time series analysis in a nutshell 2
1.2 White Noise Varianceo 4
1.3 ARMA Coeflicients 5
1.4 ARIMA Models 5
1.5 Data Sets 5

2 Functions 6
2.1 aacvf ..o e 6
2.2 acvE ..o 6
2.3 ar.inf . . . L e 7
2.4 araro s 8
2.0 Arma e 9
2.6 autofit 10
27 bUurg . . .o 11
2.8 check 11
2.9 forecast 12
2.10 hannan e e e 13
2,11 hr . . e 14
2.12 1a . . e 15
213 ma.inf . . .o L e 15
2.14 periodogramo 16
2,15 plota 17
2.16 plotc 18
2,17 plots 19
2.18 Resid 19
2.19 season L 20
220 sSIimo 21
2.21 smooth.eXp 21
2.22 smooth.fft e 22
2.23 smooth.ma 22
2.24 smooth.rank 23
225 specify 24
2.26 test 24
227 trend e 25
228 YW oL 25

1 Introduction

ITSM-R is an R package for analyzing and forecasting univariate time series data. The
intended audience is students using the textbook Introduction to Time Series and Forecasting
by Peter J. Brockwell and Richard A. Davis. The textbook includes a student version of the
Windows-based program I'TSM 2000. The initials I'TSM stand for Interactive Time Series
Modeling. ITSM-R provides a subset of the functionality found in ITSM 2000.

The following example shows I'TSM-R at work forecasting a time series.

library(itsmr) # Load ITSM-R

plotc(wine) # Plot the data

M = c("log","season",12,"trend", 1) # Model the data

e = Resid(wine,M) # Obtain residuals

test(e) # Check for stationarity

a = arma(e,p=1,9=1) # Model the residuals

ee = Resid(wine,M,a) # Obtain secondary residuals
test(ee) # Check for white noise
forecast(wine,M,a) # Forecast future values

Note the use of Resid with a capital R to compute residuals. ITSM-R uses Resid instead of
resid to avoid a name conflict warning when the library is loaded.

1.1 Time series analysis in a nutshell

It turns out that you do most of the work. You have to analyze the data and determine a
data model M and ARMA model a that yield white noise for residuals.

Time series data — M — a — White noise

What the software does is invert M and a to transform zero into a forecast. (Recall that
zero is the best predictor of noise.)

0— a !t — M~! — Forecast

Model M should yield residuals that are a stationary time series. Basically this means that
any trend in the data is eliminated. (Seasonality in the data can be removed by either M or
a.) The test function is used to determine if the output of M is stationary. The following
is the result of test(e) in the above example.

ACF PACF

Residuals Normal Q-Q Plot

\\\\\\\\\\\\\\\\\\\\\\\\\

Null hypothesis: Residuals are iid noise.

Test Distribution Statistic p-value
Ljung-Box Q Q ~ chisq(20) 71.57 0 *
McLeod-Li Q Q ~ chisq(20) 12.07 0.9138
Turning points T (T-93.3)/5 = N(0,1) 93 0.9468
Diff signs S (8-70.5)/3.5 = N(0,1) 70 0.8848
Rank P (P-5005.5)/283.5 ~ N(0,1) 5136 0.6453

As seen above, the ACF and PACF plots decay rapidly indicating stationarity. After M is
determined, the residuals of M are modeled with an ARMA model a. In some circumstances
the following table can be useful for choosing p and ¢ from the plots of test (e).

Model

ACF PACF
Decays Zero for h > p

Zero for h > q Decays

Decays Decays

AR(p)
MA(q)
ARMA(p, q)

The ARMA model a should yield residuals that resemble white noise. To check for white
noise, the test function is used a second time. The following is the result of test(ee) in

the above example.

PACF

Normal Q-Q Plot

\\\\\

Null hypothesis: Residuals are iid noise.

Test Distribution Statistic p-value
Ljung-Box Q Q ~ chisq(20) 13.3 0.8642
McLeod-Li Q Q ~ chisq(20) 16.96 0.6556
Turning points T (T-93.3)/5 = N(0,1) 93 0.9468
Diff signs S (8-70.5)/3.5 = N(0,1) 70 0.8848
Rank P (P-5005.5)/283.5 ~ N(0,1) 4999 0.9817

The vertical lines in the ACF and PACF plots are below the noise threshold (the dashed
horizontal lines) for lags greater than zero which is good. In addition, the p-values in the
table all fail to reject the null hypothesis of iid noise. Recall that a p-value is the probability

that the null hypothesis is true.

1.2 White Noise Variance

ITSM-R includes five methods for estimating ARMA parameters. They are Yule-Walker,
Burg, Hannan-Rissanen, maximum likelihood, and the innovations method. For all estima-
tion methods, ITSM-R uses the following formula to estimate white noise variance (Brockwell

and Davis, page 164).
1ifX_XP
) t t
o = — _—_—
n < Ti 1

The X, — X, are innovations (Brockwell and Davis, page 71). Residuals are defined as follows
(Brockwell and Davis, page 164).

X —X

W, =t 2t

Ti—1

Thus 62 is the average of the squared residuals.

The innovations algorithm (Brockwell and Davis, page 73) is used to compute X, and 74_1.
Note that the algorithm produces mean squared errors v,_; = E(X; — X;)? for s(i,j) =
E(X;X;) given in equation (2.5.24). However, ITSM-R uses x(i,j) = E(W;W,) given in
equation (3.3.3). For the covariance in (3.3.3) the innovations algorithm produces r;_; =
EW, — Wt)2 instead of v;_1. The relationship between v, _; and r;_; is given in equation
(3.3.8) as

v = B(X; — X))? = 2E(W, — W,)? = o%r 4

where ¢? is white noise variance.

It should be noted that vx in (3.3.3) is the autocovariance of the ARMA model, not of the
data. Then by equation (3.2.3) it can be seen that ¢=2 in (3.3.3) cancels with ¢? in ~x.
Hence the innovations algorithm does not depend on white noise variance at all. After the
innovations are computed, white noise variance is estimated using the above formula for 62.

Yx(h) = BE(Xiun X0) = 0% Y i (32.3)
j=0

m = max(p, q) (3.3.2)
(0 (i = j), L<i, j<m

’YXZ_] ZQST"YX T_‘Z_]D ’ mln(z,])§m<max(z,j)§2m,
> 0,04y, min(i, j) > m,
r=0

L0 otherwise.
(3.3.3)

Because all estimation methods use the above formula for 62, variance estimates computed
by I'TSM-R are different from what is normally expected. For example, the Yule-Walker es-
timation function yw returns a white noise variance estimate that differs from the traditional
Yule-Walker algorithm.

Since variance estimates are computed uniformly, model AICCs can always be compared
directly, even when different methods are used to estimate model parameters. For example,
it is perfectly valid to compare the AICC of a Yule-Walker model to that of a maximum
likelihood model.

1.3 ARMA Coefficients

ARMA coefficient vectors are ordered such that the vector index corresponds to the lag of
the coefficient. For example, the model

X — 1 Xio1 — 0o Xy 0o =2+ 01241 + 022,

with
(bl == 1/2
$2=1/3
6, =1/4
(92 - 1/5

corresponds to the following R vectors.

phi = c(1/2,1/3)
theta = c(1/4,1/5)

The equivalent model
Xe =1 Xs 1+ 02Xy o+ Zi + 01211+ 0274

makes plain the sign convention of the AR coefficients.

1.4 ARIMA Models

ARIMA((p,d,q) models are specified by differencing d times with a lag of one each time. For
example, the following R code specifies an ARIMA(1,2,3) model for data set quant.

M= c("diff",1,"diff",1)
e = Resid(quant,M)
a = arma(e,1,3)

1.5 Data Sets

ITSM-R includes the following data sets that are featured in Introduction to Time Series
and Forecasting. Each data set is an ordinary vector (not a time series object).

Name Obs. | Description

airpass 144 | Number of international airline passengers, 1949 to 1960
deaths 72 | USA accidental deaths, 1973 to 1978

dowj 78 | Dow Jones utilities index, August 28 to December 18, 1972
lake 98 | Level of Lake Huron, 1875 to 1972

strikes 30 | USA union strikes, 1951 to 1980
Sunspots | 100 | Number of sunspots, 1770 to 1869
wine 142 | Australian red wine sales, January 1980 to October 1991

2 Functions

2.1 aacvf

Computes the autocovariance of an ARMA model.

a ARMA model

aacvf(a,h) { h Maximum lag
The ARMA model is a list with the following components.

$phi AR coefficients [1:p] = ¢1,..., ¢,
$theta MA coefficients [1:q] =04,...,0,
$sigma2 White noise variance o2

Returns a vector of length h+1 to accomodate lag 0 at index 1.
The following example is from page 103 of Introduction to Time Series and Forecasting.

R> a = specify(ar=c(1,-0.24) ,ma=c(0.4,0.2,0.1))
R> aacvf(a,3)
[1] 7.171327 6.441393 5.060274 3.614340

2.2 acvf

Computes the autocovariance of time series data.

x Time series data
h Maximum lag

acvf (x,h=40) {
Returns a vector of length h+1 to accommodate lag 0 at index 1.

Example:

R> gamma = acvf(Sunspots)
R> plot(0:40,gamma,type="h")

1000

|
T
30

40

o
‘H‘

0 10 20

0:40

2.3 ar.inf

Returns the AR(o0) coefficients g, 71, ..., m, where my = 1.

a ARMA model
n Order

ar.inf (a,n) {
A vector of length n+1 is returned to accommodate 7y at index 1.
Example:

R> a = yw(Sunspots,?2)

R> ar.inf(a,10)

[1] 1.0000000 -1.3175005 0.6341215 0.0000000 0.0000000 0.0000000
[7] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

For invertible ARMA processes, AR(00) is the polynomial 7(z) such that
m(2) = L =14 mz+m2® + - -

The corresponding autoregression is
Zt = W(B)Xt = Xt + 7T1Xt_1 + 7T2Xt_2 + cee

The coeflicients 7; are calculated recursively using the following formula. (See page 86 of
Introduction to Time Series and Forecasting.)

q
Wj:—(bj—zekﬂ'j,k j:1,2,
k=1

2.4 arar

Predict future values of a time series using the ARAR algorithm.

X Observed data
arar (x,h=10,o0pt=2) h Steps ahead
opt Display option

The display options are 0 for silent, 1 for tabulate, 2 for plot and tabulate. Returns the
following list invisibly.

$pred Predicted values

$se Standard errors

$1 Lower bounds

$u Upper bounds
Example:

R> arar(airpass)

Optimal lags 1 2 9 10

Optimal coeffs 0.5247184 0.2735903 0.2129203 -0.316453

WN Variance 110.1074

Filter 1 -0.5247184 -0.2735903 0 0 0 0 0 0 -0.2129203 0.316453 0
-1.114253 0.5846688 0.3048487 0 0 0 0 O O 0.237247 -0.3526086

Step Prediction sqrt (MSE) Lower Bound Upper Bound
1 466.1915 10.49321 445.6248 486.7582
2 426.3592 11.85003 403.1331 449 .5853
3 463.614 13.17574 437.7895 489.4384
4 509.5108 13.93231 482.2035 536.8182
5 516.2016 14.48202 487.8169 544 .5864
6 594.0837 14.85609 564.9658 623.2017
7 693.9735 15.12129 664 .3358 723.6112
8 670.4816 15.30835 640.4772 700.4859
9 564.4617 15.44148 534.1964 594.727

10 518.5135 15.93834 487.2743 549.7526

600 700

500

300 400

200

100

2.5 arma
Returns an ARMA model using maximum likelihood to estimate the AR and MA coefficients.

x Time series data
arma(x,p=0,9=0) p AR order
q MA order

The R function arima is called to estimate ¢ and #. The innovations algorithm is used to
estimate the white noise variance 2. The resulting ARMA model is a list with the following
components.

$phi AR coefficients [1:p] = ¢1,..., 0,
$theta MA coefficients [1:q] =04,...,0,
$sigma2 White noise variance o>

$aicc Akaike information criterion corrected

$se.phi Standard errors for the AR coefficients
$se.theta Standard errors for the MA coefficients

The signs of the coefficients correspond to the following model.
p q
X, = Z O;Xi—j+ 2y + Z OkZi—i
j=1 k=1

The following example estimates ARMA(1,0) parameters for a stationary transformation of
the Dow Jones data.

R> M = c("diff",1)
R> e = Resid(dowj,M)
R> a = arma(e,1,0)
R> a

$phi

[1] 0.4478187

$theta
(1] 0

$sigma2
[1] 0.1455080

$aicc
[1] 74.48316

$se.phi
[1] 0.01105692

$se.theta
[1] O

2.6 autofit

Uses maximum likelihood to determine the best ARMA model given a range of models.
The autofit function tries all combinations of argument sequences and returns the model
with the lowest AICC. This is a wrapper function, the R function arima does the actual
estimation.

x Time series data
autofit(x,p=0:5,9=0:5) p AR order
q MA order

Returns a list with the following components.

$phi AR coefficients [1:p] = ¢1,..., 0,
$theta MA coefficients [1:q] =04,...,0,
$sigma2 White noise variance o>

$aicc Akaike information criterion corrected

$se.phi Standard errors for the AR coefficients
$se.theta Standard errors for the MA coefficients

The signs of the coefficients correspond to the following model.
p q
X = Z 0; X+ Zi + Z OkZi—i
j=1 k=1

The following example shows that an ARMA(1,1) model has the lowest AICC for the Lake
Huron data.

R> autofit(lake)

$phi
[1] 0.7448993

$theta
[1] 0.3205891

$sigma?
[1] 0.4750447

$aicc
[1] 212.7675

$se.phi
[1] 0.006029624

$se.theta
[1] 0.01288894

10

2.7 burg

Estimates AR coefficients using the Burg method.

x Time series data

burg(x,p) {p AR order

Returns an ARMA model with the following components.

$phi AR coefficients [1:p] = ¢1,..., 0,
$theta 0

$sigma2 White noise variance o>

$aicc Akaike information criterion corrected

$se.phi Standard errors for AR coefficients
$se.theta 0

Example:

R> burg(lake,1)
$phi
[1] 0.8388953

$theta
[1] O

$sigma2
[1] 0.5096105

$aicc
[1] 217.3922

$se.phi
[1] 0.003023007

$se.theta
[1] O

2.8 check
Check for causality and invertibility of an ARMA model.

check(a) { a ARMA model
The ARMA model is a list with the following components.

$phi AR coefficients [1:p] = ¢1,..., 0,
$theta MA coefficients [1:q] =64,...,6,

11

Example:

R> a = specify(ar=c(0,0,0.99))
R> check(a)

Causal

Invertible

2.9 forecast

Predict future values of a time series.

X Time series data

M Data model

a ARMA model
forecast(x,M,a,h=10,0pt=2,alpha=0.05) b Steps ahead

opt Display option

alpha Level of significance

The data model M can be NULL for none. The display options are 0 for none, 1 for tabulate,
2 for plot and tabulate. See below for details about the data model.

Example:
R> M = c("log","season",12,"trend", 1)
R> e = Resid(wine,M)
R> a = arma(e,1,1)
R> forecast(wine,M,a)
Step Prediction Lower Bound Upper Bound
1 2227 .556 1834.156 2705.334
2 2374.062 1946.145 2896.069
3 1216.429 993.925 1488.743
4 1634.838 1332.583 2005.651
5 1883.996 1532.926 2315.467
6 2097.927 1704.717 2581.833
7 2524 .942 2049.658 3110.437
8 2542.990 2062.775 3135.001
9 3096.280 2510.185 3819.219
10 3180.418 2577.324 3924 .636
.
[1 M
s A T
WYY

12

T
150

The data model M is a vector of function names. The functions are applied to the data in
left to right order. There are five functions from which to choose.

diff Difference the data

hr Subtract harmonic components
log Take the log of the data
season Subtract seasonal component
trend Subtract trend component

A function name may be followed by one or more arguments.
diff has a single argument, the lag.

hr has one or more arguments, each specifying the number of observations per harmonic
period.

log has no arguments.
season has one argument, the number of observations per season.

trend has one argument, the polynomial order of the trend, (1 for linear, 2 for quadratic,
etc.)

A data model is built up by concatenating the function names and arguments. For example,
the following vector takes the log of the data, then subtracts a seasonal component of period
twelve then subtracts a linear trend component.

R> M = c("log","season",12,"trend", 1)
At the end of the data model there is an implied subtraction of the mean operation. Hence

the resulting time series always has zero mean.

2.10 hannan

Estimates ARMA coefficients using the Hannan-Rissanen algorithm. It is required that
q > 0.

x Time series data
hannan(x,p,q) p AR order
q MA order

Returns a list with the following components.

$phi AR coefficients [1:p] = ¢1,..., 0,
$theta MA coefficients [1:q] =64,...,6,
$sigma2 White noise variance o>

$aicc Akaike information criterion corrected

$se.phi Standard errors for AR coefficients
$se.theta Standard errors for MA coefficients

13

Example:

R> hannan(lake,1,1)
$phi
[1] 0.6960772

$theta
[1] 0.3787969

$sigma2
[1] 0.477358

$aicc
[1] 213.183

$se.phi
[1] 0.07800321

$se.theta
[1] 0.1465265

2.11 hr

Returns the sum of harmonic components of time series data.

hr(x,d) {

Example:

R> y = hr(deaths,c(12,6))

R> plotc(deaths,y)

8000 9000 10000 11000

7000

x Time series data
d Vector of harmonic periods

AT o

/ X/\x /ﬁ‘ A j\w X‘x :

RVATANCTATA

V¥ VY
| [

14

2.12 1ia

Calculates MA coefficients using the innovations algorithm.

x Time series data
ia(x,q,m=17) q MA order
m Recursion level

Returns a list with the following components.

$phi 0

$theta MA coefficients [1:q] =04,...,0,
$sigma2 White noise variance o>

$aicc Akaike information criterion corrected
$se.phi 0

$se.theta Standard errors for MA coeflicients

Normally m should be set to the default 17 even when fewer MA coefficients are required.

The following example generates results that match Introduction to Time Series and Fore-
casting page 154.

R> y = diff(dowj)
R> a = ia(y,17)
R> round(a$theta,4d)
[1] 0.4269 0.2704 0.1183 0.1589 0.1355 0.1568 0.1284 -0.0060
[9] 0.0148 -0.0017 0.1974 -0.0463 0.2023 0.1285 -0.0213 -0.2575
[17] 0.0760
R> round(a$theta/a$se/1.96,4)
[1] 1.9114 1.1133 0.4727 0.6314 0.5331 0.6127 0.4969 -0.0231
[9] 0.0568 -0.0064 0.7594 -0.1757 0.7666 0.4801 -0.0792 -0.9563
[17] 0.2760

The formula for the standard error of the jth coefficient is given on page 152 of Introduction
to Time Series and Forecasting as

where 6,,0 = 1. Hence the standard error for 6, is oy = n~/2.

2.13 ma.inf
Returns the MA(oc0) coefficients g, 91, ..., ¥, where ¢y = 1.

a ARMA model

ma.inf(m,n) {n Order

A vector of length n+1 is returned to accommodate 1y at index 1.

Example:

15

R> a = yw(Sunspots,?2)
R> ma.inf(a,10)
[1] 1.00000000 1.31750053 1.10168617 0.61601672 0.11299949
[6] -0.24175256 -0.39016452 -0.36074148 -0.22786538 -0.07145884
[11] 0.05034727

For causal ARMA processes, MA(o0) is the polynomial v (z) such that
0(2) 2
= — = 1 ...
¥(2) 5(2) + 1z + Pzt +

The corresponding moving average is
Xe=9(B)Z; = Zi + 1 Zey + 02 Zs g + -

The coeflicients 1; are calculated recursively using the following formula. (See page 85 of
Introduction to Time Series and Forecasting.)

p
7/’3':93""2%%4@ j=1,2,...
=1

2.14 periodogram
Plots a periodogram.

X Time series data
periodogram(x,q=0,opt=2) q MA filter order
opt Plot option

The periodogram vector divided by 27 is returned invisibly. The plot options are 0 for no
plot, 1 to plot only the periodogram, and 2 to plot both the periodogram and the filter
coefficients. The filter q can be a vector in which case the overall filter is the composition of
MA filters of the designated orders.

R> periodogram(Sunspots,c(1,1,1,1))
Filter 0.01234568 0.04938272 0.1234568 0.1975309 0.2345679 0.1975309
0.1234568 0.04938272 0.01234568

AVAN

0.0 05 1.0 15 2.0 25 3.0

(Smoothed Periodogram)/2pi

0 400 800

Peesessscoos
T T

Smoothing Filter

005 0.5

16

2.15 plota
Plots ACF and PACF for time series data and/or ARMA model.

u,v Time series data and/or ARMA model, in either order

plota(u,v=NULL,h=40) { h Maximum lag

Example:

R> plota(Sunspots)

ACF PACF
2 m Dat 2 = Data
g 3
i
s | ‘H “ L ° | ‘Hm‘m‘ Lo
L AL Il T
[111
3 3
. .
0 10 20 30 40 0 10 20 30 40
Lag Lag
R> a = yw(Sunspots,?2)
R> plota(Sunspots,a)
ACF PACF
2 = Data 2 ® Data
| Model B Model
2 3
i
o I H\ M " ° | ‘Hm‘m‘ Lo
B AL 1 L e R T
I L
g 3
. .
0 10 20 30 40 0 10 20 30 40

The following example demonstrates the utility of the +1.96/1/n bounds as a test for noise.

R> noise = rnorm(200)
R> plota(noise)

17

ACF PACF
2 ® Dat 2 ® Data
w “
3 g
o I Ll [B T I TP . Ll
3 T T = e T
o o
s B
° s
' T ' T
0 10 20 30 40 0 10 20 30 4
Lag Lag

2.16 plotc

Plots one or two time series in color.
plotc(yl,y2=NULL) {

Example:

R> plotc(uspop)

y1 Blue line with knots
y2 Red line without knots

200

150

100

50

e
.
e —
18‘00 1850 19‘00 15;50
R> y = trend(uspop,2)
R> plotc(uspop,y)
18‘00 18‘50 19‘00 19‘50

18

2.17 plots
Plots the spectrum of data or an ARMA model.

plots(u) { u Time series data or ARMA model
Example:

R> a = specify(ar=c(0,0,0.99))
R> plots(a)

Model Spectrum

2.18 Resid
Returns the residuals of a time series model.

x Time series data
Resid(x,M=NULL, a=NULL) M Data model
a ARMA model

Either M or a can be NULL for none. See below for details about the data model. The returned

residuals always have zero mean.

In the following example, Resid and test are used to check for stationarity of the trans-
formed data. Then they are used again to check that the overall model reduces the data to

white noise.

R> M = c("log","season",12,"trend",1)
R> e = Resid(airpass,M)
R> test(e)

R> a = arma(e,1,0)
R> ee = Resid(airpass,M,a)
R> test(ee)

The data model M is a vector of function names. The functions are applied to the data in
left to right order. There are five functions from which to choose.

19

diff Difference the data

hr Subtract harmonic components
log Take the log of the data
season Subtract seasonal component
trend Subtract trend component

A function name may be followed by one or more arguments.
diff has a single argument, the lag.

hr has one or more arguments, each specifying the number of observations per harmonic
period.

log has no arguments.
season has one argument, the number of observations per season.

trend has one argument, the polynomial order of the trend, (1 for linear, 2 for quadratic,
etc.)

A data model is built up by concatenating the function names and arguments. For example,
the following vector takes the log of the data, then subtracts a seasonal component of period
twelve then subtracts a linear trend component.

R> M = c("log","season",12,"trend", 1)

At the end of the data model there is an implied subtraction of the mean operation. Hence
the resulting time series always has zero mean.

2.19 season

Returns the seasonal component of time series data.

x Time series data

d .
season(x,d) { d Number of observations per season
Example:

R> s = season(deaths,12)
R> plotc(deaths,s)

YN

2000 4000 6000 8000 10000

0

2000

20

2.20 sim

Generate synthetic observations for an ARMA model.

a ARMA model
n Number of synthetic observations required

sim(a,n) {

The ARMA model is a list with the following components.

$phi AR coefficients ¢4, ..., ¢,
$theta MA coefficients 0, ..., 0,
$sigma2 White noise variance o2

Example:

R> a = specify(ar=c(0,0,0.99))
R> x = sim(a,60)
R> plotc(x)

I

- f |

SRR

. [L

. I (EH N \‘\ |

O | AN

I AR AR Y

Taw o MENAV

T RN A A

,‘\U\M“‘m‘wje“‘?e,c}%‘ RIAIRIRTRIRIRIRIA

R Pl s PV VA ALY

A AR AN AR
IR \ I | .
AP

2.21 smooth.exp

Applies an exponential smoothing filter to data and returns the result.

x Time series data

smooth.exp(x,a) . .
pRx a 0 to 1, zero is maximum smoothness.

Example:

R> y = smooth.exp(strikes,0.4)
R> plotc(strikes,y)

5500 6000

5000

4500

4000

3500

21

2.22 smooth.fft
Applies a low pass filter to data and returns the result.

x Time series data

smooth.fft(x,c) { ¢ Cut-off freq. 0-1

The cut-off frequency is specified as a fraction. For example, ¢ = 0.25 passes the lowest 25%
of the frequency spectrum.

Example:

R> y = smooth.fft(signal,0.035)
R> plotc(signal,y)

: | i
] ‘ W‘ Il \K R |
TR’ i
i W f ﬂ s mew \”M\ i I\J }!Lﬁ\
-1 B ‘f”‘“‘ F\/Mm\ L Jmm W\“% I M j‘\ \g\
Wﬂ“ﬁ\“ kgl 1IN
A1 LT

2.23 smooth.ma
Applies a moving average filter to data and returns the result.

x Time series data

smooth.ma(x,q) {q Filter order

Example:

R> y = smooth.ma(strikes,2)
R> plotc(strikes,y)

4500 5000 5500 6000

3500 4000

22

From page 25 of Introduction to Time Series and Forecasting,

Hence for ¢ = 2 the moving average filter is

1
Y, = S(Xt—Q + X1+ Xo + X1 + Xigo)

2.24 smooth.rank

Passes the mean and the k frequencies with the highest amplitude.

spectrum is filtered out.

x Time series data

smooth.rank(x,k) {k Rank
Example:

R> y = smooth.rank(deaths,1)
R> plot(deaths,y)

8000 9000 10000 11000

7000

R> y = smooth.rank(deaths,2)
R> plot(deaths,y)

9000 10000 11000

8000

7000

23

The remainder of the

2.25 specify
Returns an ARMA model with the specified parameters.

ar AR coefficients [1:p] = ¢y, ...
specify(ar=0,ma=0,sigma2=1) ma MA coefficients [1:q] =64, ...

sigma2 White noise variance o2
The signs of the coefficients correspond to the following model.
Xi=0Xia + 0 Xy o+ + 2+ 002 1+ 0225+ - -
Example:

R> specify(ar=c(0,0,0.99))
$phi
[1] 0.00 0.00 0.99

$theta
[1] O

$sigma2
[1]1 1

2.26 test

Test residuals for randomness.
test (e) { e Residuals
Example:

R> M = c("log","season",12,"trend", 1)

R> e = Resid(airpass,M)

R> test(e)

Null hypothesis: Residuals are iid noise.

Test Distribution Statistic p-value
Ljung-Box Q Q ~ chisq(20) 412.43 0 *
McLeod-Li Q Q ~ chisq(20) 41.29 0.0034 *
Turning points T (T-94.7)/5 ~ N(0,1) 85 0.0545
Diff signs S (8-71.5)/3.5 " N(0,1) 68 0.314
Rank P (P-5148)/289.5 ~ N(0,1) 5187 0.8928

24

ACF PACF
e o
- - Data -
° ‘H ° l
= =
o L e P
S I L O £ S L B 1 A L LS
0 0
< <
e | e |
w T T T T T w T T T T T
0 10 20 30 40 0 10 20 30 40
Lag Lag
Residuals Normal Q-Q Plot
s S
4 o 9 4
®
g, o0 gy 8 ey £ s
3 o
s % ® s o T 0, g <
a 4
g [° & o7 > [°© ®&% 9 w
- (g) a 9 4
S ewo, SRy o g s
4 %0 ° ®° °] 4
2 ° 2 °
B ° Ho
< T T T T T T T T < T T T T T
0 20 40 60 80 100 120 140 2 1 0 1 2
Index Theoretical Quantiles
2.27 trend

Returns the trend component of time series data.

x Time series data

trend(x,p) {n Polynomial order
Example:

R> y = trend(uspop,2)
R> plotc(uspop,y)

250
L

200
L

150
L

100
L

50

T T
1800 1850 1900 1950

2.28 yw
Estimates AR coefficients using the Yule-Walker method.

x Time series data

yw(x,p) {p AR order

Returns an ARMA model with the following components.

25

$phi AR coefficients [1:p] = ¢1,..., ¢,

$theta 0
$sigma2 White noise variance o>
$aicc Akaike information criterion corrected

$se.phi Standard errors for AR coefficients
$se.theta 0

Example:

R> yw(lake,1)
$phi
[1] 0.8319112

$theta
[1] O

$sigma?
[1] 0.5098608

$aicc
[1] 217.4017

$se.phi
[1] 0.003207539

$se.theta
[1] O

These are the relevant formulas from Introduction to Time Series and Forecasting, Second
Edition.

A(h) = % Z (Xign — Xn) (Xi — Xon) (2.4.4)
4(0) A(1) (k1)
B = A(1) ¥0) - Ak =2) (2.4.6)
S=1) Ak—2) - 4(0)
~ 1 -
Ry, = &(O)Fk (2.4.8)
b, =R,'p, (5.1.7)
b, =4(0) (1 - ﬁ;fi;lﬁp> (5.1.11)

where p, = (p(1),...,p(p)) = ,/7(0). The subscript p is the order of the AR model (i.e.,
number of AR coefficients). Note that (5.1.7) and (5.1.11) can also be written as

and R
f)’p = 7(0) - :Ygl;gbp
From equation (5.1.13) the standard error for the jth AR coefficient is

SE; =/ 2
n

where 0;; is the jth diagonal element of ﬁpf‘; L

The R code follows immediately from the above equations.

gamma = acvf(x,p)

Gamma = toeplitz(gammal[l:p])

phi = solve(Gamma,gammal[2: (p+1)])

v = gamma[l] - drop(crossprod(gammal2: (p+1)],phi))
V = v * solve(Gamma)

se.phi = sqrt(1/nxdiag(V))

Recall that R indices are 1-based hence gamma[1] is 4(0). The function crossprod returns
a 1-by-1 matrix which is then converted by drop to a scalar.

27

