-- Transition probabilities for H-alpha -- psi returns a hydrogen atom eigenfunction psi(n,l,m) = R(n,l) Y(l,m) -- R returns a radial eigenfunction R(n,l) = 2 / n^2 * a0^(-3/2) * sqrt((n - l - 1)! / (n + l)!) * (2 r / (n a0))^l * L(2 r / (n a0),n - l - 1,2 l + 1) * exp(-r / (n a0)) L(x,n,m) = (n + m)! sum(k,0,n,(-x)^k / ((n - k)! (m + k)! k!)) -- Y returns a spherical harmonic eigenfunction Y(l,m) = (-1)^m sqrt((2l + 1) / (4 pi) (l - m)! / (l + m)!) * P(cos(theta),l,m) exp(i m phi) P(f,n,m) = eval(1 / (2^n n!) (1 - x^2)^(m/2) * d((x^2 - 1)^n,x,n + m),x,f) -- E(n) returns the nth energy eigenvalue E(n) = -e^2 / (8 pi epsilon0 a0 n^2) -- integrate f I(f) = do( f = f r^2 sin(theta), -- multiply by volume element f = eval(f, sqrt(1 - cos(theta)^2), sin(theta)), -- simplify f = eval(f, 1 / sqrt(1 - cos(theta)^2), 1 / sin(theta)), -- simplify f = eval(f, 1 / (1 - cos(theta)^2), 1 / sin(theta)^2), -- simplify f = eval(f, 1 / (1 - cos(theta)^2)^(3/2), 1 / sin(theta)^3), -- simplify f = defint(f,theta,0,pi,phi,0,2pi), f = integral(f,r), 0 - eval(f,r,0) ) X(fk,fi) = do( ax = I(conj(fk) r sin(theta) cos(phi) fi), ay = I(conj(fk) r sin(theta) sin(phi) fi), az = I(conj(fk) r cos(theta) fi), float(conj(ax) ax + conj(ay) ay + conj(az) az) ) "2p 3s" (X(psi(2,1,1),psi(3,0,0)), X(psi(2,1,0),psi(3,0,0)), X(psi(2,1,-1),psi(3,0,0))) "2s 3p" (X(psi(2,0,0),psi(3,1,1)), X(psi(2,0,0),psi(3,1,0)), X(psi(2,0,0),psi(3,1,-1))) "2p 3d" ((X(psi(2,1,1),psi(3,2,2)), X(psi(2,1,0),psi(3,2,2)), X(psi(2,1,-1),psi(3,2,2))), (X(psi(2,1,1),psi(3,2,1)), X(psi(2,1,0),psi(3,2,1)), X(psi(2,1,-1),psi(3,2,1))), (X(psi(2,1,1),psi(3,2,0)), X(psi(2,1,0),psi(3,2,0)), X(psi(2,1,-1),psi(3,2,0))), (X(psi(2,1,1),psi(3,2,-1)), X(psi(2,1,0),psi(3,2,-1)), X(psi(2,1,-1),psi(3,2,-1))), (X(psi(2,1,1),psi(3,2,-2)), X(psi(2,1,0),psi(3,2,-2)), X(psi(2,1,-1),psi(3,2,-2))))