"Zeeman effect" E(n,l,j,mj) = E1 / n^2 (1 + alpha^2 / n^2 (n / (j + 1/2) - 3/4)) + gJ(l,j) mj muB B gJ(l,j) = 1 + (j (j + 1) - l (l + 1) + 3/4) / (2 j (j + 1)) check(E(2,1,3/2,3/2) == 1/4 E1 (1 + 1/16 alpha^2) + 2 muB B) check(E(2,1,3/2,-3/2) == 1/4 E1 (1 + 1/16 alpha^2) - 2 muB B) check(E(2,1,3/2,1/2) == 1/4 E1 (1 + 1/16 alpha^2) + 2/3 muB B) check(E(2,1,3/2,-1/2) == 1/4 E1 (1 + 1/16 alpha^2) - 2/3 muB B) check(E(2,1,1/2,1/2) == 1/4 E1 (1 + 5/16 alpha^2) + 1/3 muB B) check(E(2,1,1/2,-1/2) == 1/4 E1 (1 + 5/16 alpha^2) - 1/3 muB B) check(E(2,0,1/2,1/2) == 1/4 E1 (1 + 5/16 alpha^2) + muB B) check(E(2,0,1/2,-1/2) == 1/4 E1 (1 + 5/16 alpha^2) - muB B) "ok"
Run