WKB approximation

Start with the time-independent Schrodinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi
$$

Rewrite as

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}=-\frac{2 m}{\hbar^{2}}(E-V(x)) \psi \tag{1}
\end{equation*}
$$

Let ψ be composed of amplitude A and phase ϕ.

$$
\begin{equation*}
\psi(x)=A(x) e^{i \phi(x)} \tag{2}
\end{equation*}
$$

It follows that

$$
\frac{d \psi}{d x}=\left(\frac{d A}{d x}+i A \frac{d \phi}{d x}\right) e^{i \phi}
$$

and

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}=\left(\frac{d^{2} A}{d x^{2}}+2 i \frac{d A}{d x} \frac{d \phi}{d x}+i A \frac{d^{2} \phi}{d x^{2}}-A\left(\frac{d \phi}{d x}\right)^{2}\right) e^{i \phi} \tag{3}
\end{equation*}
$$

Substitute (2) and (3) into (1) to obtain

$$
\begin{equation*}
\left(\frac{d^{2} A}{d x^{2}}+2 i \frac{d A}{d x} \frac{d \phi}{d x}+i A \frac{d^{2} \phi}{d x^{2}}-A\left(\frac{d \phi}{d x}\right)^{2}\right) e^{i \phi}=-\frac{2 m}{\hbar^{2}}(E-V(x)) A e^{i \phi} \tag{4}
\end{equation*}
$$

Partition (4) as a real equivalence

$$
\begin{equation*}
\frac{d^{2} A}{d x^{2}}-A\left(\frac{d \phi}{d x}\right)^{2}=-\frac{2 m}{\hbar^{2}}(E-V(x)) A \tag{5}
\end{equation*}
$$

and an imaginary equivalence

$$
\begin{equation*}
2 i \frac{d A}{d x} \frac{d \phi}{d x}+i A \frac{d^{2} \phi}{d x^{2}}=0 \tag{6}
\end{equation*}
$$

Divide equation (5) by A to obtain

$$
\frac{1}{A} \frac{d^{2} A}{d x^{2}}-\left(\frac{d \phi}{d x}\right)^{2}=-\frac{2 m}{\hbar^{2}}(E-V(x))
$$

Rewrite as

$$
\left(\frac{d \phi}{d x}\right)^{2}=\frac{2 m}{\hbar^{2}}(E-V(x))+\frac{1}{A} \frac{d^{2} A}{d x^{2}}
$$

For the circumstance of

$$
\left|\frac{2 m}{\hbar^{2}}(E-V(x))\right| \gg\left|\frac{1}{A} \frac{d^{2} A}{d x^{2}}\right|
$$

we can use the approximation

$$
\left(\frac{d \phi}{d x}\right)^{2} \approx \frac{2 m}{\hbar^{2}}(E-V(x))
$$

Hence

$$
\begin{equation*}
\frac{d \phi}{d x} \approx \pm \sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(x) \approx \pm \int \sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))} d x \tag{8}
\end{equation*}
$$

We can rewrite (6) as

$$
\begin{equation*}
\frac{i}{A} \frac{d}{d x}\left(A^{2} \frac{d \phi}{d x}\right)=0 \tag{9}
\end{equation*}
$$

by noting that

$$
\frac{i}{A} \frac{d}{d x}\left(A^{2} \frac{d \phi}{d x}\right)=\frac{i}{A}\left(2 A \frac{d A}{d x} \frac{d \phi}{d x}+A^{2} \frac{d^{2} \phi}{d x^{2}}\right)=2 i \frac{d A}{d x} \frac{d \phi}{d x}+i A \frac{d^{2} \phi}{d x^{2}}
$$

Multiply by sides of (9) by $-i A$ to obtain

$$
\frac{d}{d x}\left(A^{2} \frac{d \phi}{d x}\right)=0
$$

By antiderivative

$$
A^{2} \frac{d \phi}{d x}=C^{2}
$$

where C^{2} is an arbitrary constant. Hence

$$
\begin{equation*}
A(x)=C\left(\frac{d \phi}{d x}\right)^{-\frac{1}{2}} \tag{10}
\end{equation*}
$$

Substitute (7) into (10) to obtain

$$
\begin{equation*}
A(x) \approx C\left(\pm \sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))}\right)^{-\frac{1}{2}} \tag{11}
\end{equation*}
$$

Substitute (8) and (11) into (2) to obtain

$$
\psi(x) \approx C\left(\pm \sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))}\right)^{-\frac{1}{2}} \exp \left(\pm i \int \sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))} d x\right)
$$

Rewrite as

$$
\begin{equation*}
\psi(x) \approx C e^{i \theta}\left(\frac{2 m}{\hbar^{2}}|E-V(x)|\right)^{-\frac{1}{4}} \exp \left(\pm i \int \sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))} d x\right) \tag{12}
\end{equation*}
$$

where

$$
\theta=\left\{\begin{array}{r}
0 \text { for case of }\left(+\sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))}\right)^{-\frac{1}{2}} \text { and } E>V(x) \\
-\frac{\pi}{4} \text { for case of }\left(+\sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))}\right)^{-\frac{1}{2}} \text { and } E<V(x) \\
-\frac{\pi}{2} \text { for case of }\left(-\sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))}\right)^{-\frac{1}{2}} \text { and } E>V(x) \\
-\frac{3 \pi}{4} \quad \text { for case of }\left(-\sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))}\right)^{-\frac{1}{2}} \text { and } E<V(x)
\end{array}\right.
$$

The constant $e^{i \theta}$ can be discarded because it cancels in (1) hence

$$
\psi(x) \approx C\left(\frac{2 m}{\hbar^{2}}|E-V(x)|\right)^{-\frac{1}{4}} \exp \left(\pm i \int \sqrt{\frac{2 m}{\hbar^{2}}(E-V(x))} d x\right)
$$

(Ref. "WKB approximation" at physicspages.com)

