Tunneling probability

Consider the following potential energy function.

$$
V(x)= \begin{cases}0, & x<0 \\ V_{0}, & 0 \leq x \leq L \\ 0, & x>L\end{cases}
$$

Suppose a particle with mass m and energy $E<V_{0}$ is traveling from left to right along the x axis. The particle has a Schrodinger equation for each region of $V(x)$.

$$
\begin{array}{ll}
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{1}=E \psi_{1}, & x<0 \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{2}+V_{0} \psi_{2}=E \psi_{2}, & 0 \leq x \leq L \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{3}=E \psi_{3}, & x>L
\end{array}
$$

Let ψ_{1} and ψ_{3} have the most general free-particle solutions.

$$
\begin{aligned}
& \psi_{1}(x)=A \exp \left(i \sqrt{\frac{2 m E}{\hbar^{2}}} x\right)+B \exp \left(-i \sqrt{\frac{2 m E}{\hbar^{2}}} x\right) \\
& \psi_{3}(x)=F \exp \left(i \sqrt{\frac{2 m E}{\hbar^{2}}} x\right)+G \exp \left(-i \sqrt{\frac{2 m E}{\hbar^{2}}} x\right)
\end{aligned}
$$

Use the WKB approximation to solve for ψ_{2}.

$$
\psi_{2}(x) \approx C \exp \left(i \int \sqrt{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}} d x\right)+D \exp \left(-i \int \sqrt{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}} d x\right)
$$

Cancel i by swapping E and V_{0}.

$$
\psi_{2}(x) \approx C \exp \left(\int \sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}} d x\right)+D \exp \left(-\int \sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}} d x\right)
$$

Substitute x for $\int d x$.

$$
\psi_{2}(x) \approx C \exp \left(\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}} x\right)+D \exp \left(-\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}} x\right)
$$

To simplify the formulas let

$$
k=\sqrt{\frac{2 m E}{\hbar^{2}}}, \quad \beta=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}
$$

and write

$$
\begin{aligned}
& \psi_{1}(x)=A \exp (i k x)+B \exp (-i k x) \\
& \psi_{2}(x)=C \exp (\beta x)+D \exp (-\beta x) \\
& \psi_{3}(x)=F \exp (i k x)+G \exp (-i k x)
\end{aligned}
$$

Exponentials of $-i$ represent particles moving from right to left. The B exponential represents a particle reflected from the boundary at $x=0$. There is no particle moving right to left at $x>L$ hence $G=0$.

Let us now solve for the coefficients using boundary conditions. Four boundary conditions are needed to ensure continuity at $x=0$ and $x=L$.

$$
\begin{aligned}
& \psi_{1}(0)=\psi_{2}(0) \\
& \psi_{1}^{\prime}(0)=\psi_{2}^{\prime}(0) \\
& \psi_{2}(L)=\psi_{3}(L) \\
& \psi_{2}^{\prime}(L)=\psi_{3}^{\prime}(L)
\end{aligned}
$$

From the boundary condition $\psi_{2}(L)=\psi_{3}(L)$ we have

$$
\begin{equation*}
C \exp (\beta L)+D \exp (-\beta L)=F \exp (i k L) \tag{1}
\end{equation*}
$$

From the boundary condition $\psi_{2}^{\prime}(L)=\psi_{3}^{\prime}(L)$ we have

$$
\begin{equation*}
\beta C \exp (\beta L)-\beta D \exp (-\beta L)=i k F \exp (i k L) \tag{2}
\end{equation*}
$$

Add β times (1) to (2) to obtain

$$
2 \beta C \exp (\beta L)=(\beta+i k) F \exp (i k L)
$$

Hence

$$
\begin{equation*}
C=\frac{(\beta+i k) F \exp (i k L-\beta L)}{2 \beta} \tag{3}
\end{equation*}
$$

Add minus β times (1) to (2) to obtain

$$
-2 \beta D \exp (-\beta L)=(-\beta+i k) F \exp (i k L)
$$

Hence

$$
\begin{equation*}
D=\frac{(\beta-i k) F \exp (i k L+\beta L)}{2 \beta} \tag{4}
\end{equation*}
$$

From the boundary condition $\psi_{1}(0)=\psi_{2}(0)$ we have

$$
\begin{equation*}
A+B=C+D \tag{5}
\end{equation*}
$$

From the boundary condition $\psi_{1}^{\prime}(0)=\psi_{2}^{\prime}(0)$ we have

$$
\begin{equation*}
i k(A-B)=\beta(C-D) \tag{6}
\end{equation*}
$$

Add $i k$ times (5) to (6) to obtain

$$
2 i k A=\beta(C-D)+i k(C+D)
$$

Hence

$$
A=\frac{\beta(C-D)}{2 i k}+\frac{C+D}{2}
$$

Substitute (3) and (4) for C and D to obtain

$$
\begin{equation*}
A=F \exp (i k L)(\cosh (\beta L)+i \gamma \sinh (\beta L)) \tag{7}
\end{equation*}
$$

where

$$
\gamma=\frac{1}{2}\left(\frac{\beta}{k}-\frac{k}{\beta}\right)
$$

The tunneling probability T is the magnitude of the transmitted wave divided by the magnitude of the inbound wave.

$$
T=\frac{|F|^{2}}{|A|^{2}}=\left|\frac{1}{\exp (i k L)(\cosh (\beta L)+i \gamma \sinh (\beta L))}\right|^{2}
$$

Hence

$$
\begin{equation*}
T=\frac{1}{\cosh ^{2}(\beta L)+\gamma^{2} \sinh ^{2}(\beta L)} \tag{8}
\end{equation*}
$$

The result can also be written as

$$
\begin{equation*}
T=\left(1+\frac{V_{0}^{2} \sinh ^{2}(\beta L)}{4 E\left(V_{0}-E\right)}\right)^{-1} \tag{9}
\end{equation*}
$$

For small values of T the following approximation can be used.

$$
T \approx\left(\frac{V_{0}^{2} \frac{1}{4} \exp (2 \beta L)}{4 E\left(V_{0}-E\right)}\right)^{-1}=\frac{16 E\left(V_{0}-E\right)}{V_{0}^{2}} \exp (-2 \beta L)
$$

Example. For an electron with

$$
\begin{aligned}
E & =1 \mathrm{eV} \\
V_{0} & =1.1 \mathrm{eV} \\
L & =10^{-9} \text { meter }
\end{aligned}
$$

the tunneling probability is

$$
T=0.053
$$

The approximate value is

$$
T=0.052
$$

(Ref. "Quantum Tunneling of Particles through Potential Barriers" at phys.libretexts.org)

