
Stern-Gerlach experiment 2

From the previous section we have the following Schrödinger equations for a Stern-Gerlach
experiment.
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We now seek solutions for ψ1 and ψ2.

An online paper1 provides the following solutions.
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Let us try verifying ψ1 and ψ2 with a Taylor series expansion of Ai(x).

We have
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For n = 9 we obtain

Ai(x) ≈ 2.73941× 10−5x9 − 0.000513531x7 + 0.00197238x6

− 0.0215683x4 + 0.0591713x3 − 0.258819x+ 0.355028

Calculate ψ1 and ψ2 using the Ai(x) approximation.

To verify ψ1 and ψ2, calculate departures from equality of the Schrödinger equations.
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1“Construction of Exact Solutions for the Stern-Gerlach Effect” by Bulnes and Oliveira.
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After calculating ϵ1 and ϵ2, cancel exponentials and zero out factors tn and zm where n ≥ 8
and m ≥ 5.

The results are
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The numerical values are round off errors hence ϵ1 = ϵ2 = 0 and ψ1 and ψ2 are confirmed as
solutions.
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Notes

1. Wavefunctions ψ1 and ψ2 given above are unnormalized and dimensionless. Recall that∫
ψ∗ψ dx = 1

Hence ψ1 and ψ2 must be multiplied by a normalization factor with dimension inverse
square root of length to cancel with dx.

2. In SI units

ℏ = [J s]

e = [A s]

B0 = [NA−1m−1]

α = [NA−1m−2]
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https://georgeweigt.github.io/examples/stern-gerlach-2-demo.html
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