

Stern-Gerlach experiment 2

From the previous section we have the following Schrödinger equations for a Stern-Gerlach experiment.

$$\begin{aligned} -\frac{\hbar^2}{2m}\nabla^2\psi_1 + \frac{e\hbar}{2m}(B_0 + \alpha z)\psi_1 &= i\hbar\frac{\partial}{\partial t}\psi_1 \\ -\frac{\hbar^2}{2m}\nabla^2\psi_2 - \frac{e\hbar}{2m}(B_0 + \alpha z)\psi_2 &= i\hbar\frac{\partial}{\partial t}\psi_2 \end{aligned}$$

We now seek solutions for ψ_1 and ψ_2 .

An online paper¹ provides the following solutions.

$$\begin{aligned} \psi_1 &= \text{Ai}\left[\left(\frac{\alpha e}{2\hbar}\right)^{1/3} \frac{\alpha e \hbar}{8m^2} t^2 + \left(\frac{\alpha e}{2\hbar}\right)^{1/3} z\right] \exp\left(-\frac{ie\alpha z t}{4m}\right) \exp\left(-\frac{ieB_0 t}{2m}\right) \\ \psi_2 &= \text{Ai}\left[\left(\frac{\alpha e}{2\hbar}\right)^{1/3} \frac{\alpha e \hbar}{8m^2} t^2 - \left(\frac{\alpha e}{2\hbar}\right)^{1/3} z\right] \exp\left(+\frac{ie\alpha z t}{4m}\right) \exp\left(+\frac{ieB_0 t}{2m}\right) \end{aligned}$$

Let us try verifying ψ_1 and ψ_2 with a Taylor series expansion of $\text{Ai}(x)$.

We have

$$\text{Ai}(x) \approx \sum_{k=0}^n a_k x^k$$

where

$$\begin{aligned} a_0 &= \frac{1}{3^{2/3}\Gamma(2/3)} \\ a_1 &= -\frac{1}{3^{1/3}\Gamma(1/3)} \\ a_2 &= 0 \\ a_{n+3} &= \frac{a_n}{(n+3)(n+2)} \end{aligned}$$

For $n = 9$ we obtain

$$\begin{aligned} \text{Ai}(x) \approx 2.73941 \times 10^{-5}x^9 - 0.000513531x^7 + 0.00197238x^6 \\ - 0.0215683x^4 + 0.0591713x^3 - 0.258819x + 0.355028 \end{aligned}$$

Calculate ψ_1 and ψ_2 using the $\text{Ai}(x)$ approximation.

To verify ψ_1 and ψ_2 , calculate departures from equality of the Schrödinger equations.

$$\begin{aligned} \epsilon_1 &= -\frac{\hbar^2}{2m}\nabla^2\psi_1 + \frac{e\hbar}{2m}(B_0 + \alpha z)\psi_1 - i\hbar\frac{\partial}{\partial t}\psi_1 \\ \epsilon_2 &= -\frac{\hbar^2}{2m}\nabla^2\psi_2 - \frac{e\hbar}{2m}(B_0 + \alpha z)\psi_2 - i\hbar\frac{\partial}{\partial t}\psi_2 \end{aligned}$$

¹ “Construction of Exact Solutions for the Stern-Gerlach Effect” by Bulnes and Oliveira.

After calculating ϵ_1 and ϵ_2 , cancel exponentials and zero out factors t^n and z^m where $n \geq 8$ and $m \geq 5$.

The results are

$$\begin{aligned}\epsilon_1 = & -1.69407 \times \boxed{10^{-20}} \frac{\alpha^{16/3} e^{16/3} \hbar^{8/3} t^6 z^2}{m^7} + 1.69407 \times \boxed{10^{-21}} \frac{\alpha^5 e^5 \hbar^3 t^6 z}{m^7} \\ & - 1.35525 \times \boxed{10^{-19}} \frac{\alpha^{13/3} e^{13/3} \hbar^{5/3} t^4 z^3}{m^5} - 4.33681 \times \boxed{10^{-19}} \frac{\alpha^{10/3} e^{10/3} \hbar^{2/3} t^2 z^4}{m^3} \\ & - 3.46945 \times \boxed{10^{-18}} \frac{\alpha^{7/3} e^{7/3} \hbar^{5/3} t^2 z}{m^3} - 1.38778 \times \boxed{10^{-17}} \frac{\alpha^{4/3} e^{4/3} \hbar^{2/3} z^2}{m} \\ & - 1.0842 \times \boxed{10^{-19}} \frac{i \alpha^{13/3} e^{13/3} \hbar^{8/3} t^5 z}{m^6} + 8.67362 \times \boxed{10^{-19}} \frac{i \alpha^{10/3} e^{10/3} \hbar^{5/3} t^3 z^2}{m^4}\end{aligned}$$

and

$$\begin{aligned}\epsilon_2 = & -1.69407 \times \boxed{10^{-20}} \frac{\alpha^{16/3} e^{16/3} \hbar^{8/3} t^6 z^2}{m^7} - 1.69407 \times \boxed{10^{-21}} \frac{\alpha^5 e^5 \hbar^3 t^6 z}{m^7} \\ & + 1.35525 \times \boxed{10^{-19}} \frac{\alpha^{13/3} e^{13/3} \hbar^{5/3} t^4 z^3}{m^5} - 4.33681 \times \boxed{10^{-19}} \frac{\alpha^{10/3} e^{10/3} \hbar^{2/3} t^2 z^4}{m^3} \\ & + 3.46945 \times \boxed{10^{-18}} \frac{\alpha^{7/3} e^{7/3} \hbar^{5/3} t^2 z}{m^3} - 1.38778 \times \boxed{10^{-17}} \frac{\alpha^{4/3} e^{4/3} \hbar^{2/3} z^2}{m} \\ & + 1.0842 \times \boxed{10^{-19}} \frac{i \alpha^{13/3} e^{13/3} \hbar^{8/3} t^5 z}{m^6} + 8.67362 \times \boxed{10^{-19}} \frac{i \alpha^{10/3} e^{10/3} \hbar^{5/3} t^3 z^2}{m^4}\end{aligned}$$

The numerical values are round off errors hence $\epsilon_1 = \epsilon_2 = 0$ and ψ_1 and ψ_2 are confirmed as solutions.

Eigenmath script

Notes

1. Wavefunctions ψ_1 and ψ_2 given above are unnormalized and dimensionless. Recall that

$$\int \psi^* \psi \, dx = 1$$

Hence ψ_1 and ψ_2 must be multiplied by a normalization factor with dimension inverse square root of length to cancel with dx .

2. In SI units

$$\begin{aligned}\hbar &= [\text{J s}] \\ e &= [\text{A s}] \\ B_0 &= [\text{N A}^{-1} \text{ m}^{-1}] \\ \alpha &= [\text{N A}^{-1} \text{ m}^{-2}]\end{aligned}$$

Hence

$$\begin{aligned}\frac{e\hbar}{2m}(B_0 + \alpha z) &= [\text{J}] \\ \left(\frac{\alpha e}{2\hbar}\right)^{1/3} &= [\text{m}^{-1}] \\ \frac{\alpha e \hbar}{8m^2} &= [\text{m s}^{-2}]\end{aligned}$$

As required by the Airy function, these products are dimensionless.

$$\begin{aligned}\left(\frac{\alpha e}{2\hbar}\right)^{1/3} \frac{\alpha e \hbar}{8m^2} t^2 &= [1] \\ \left(\frac{\alpha e}{2\hbar}\right)^{1/3} z &= [1]\end{aligned}$$

As required by the exponential function, these products are dimensionless.

$$\begin{aligned}\frac{e\alpha z t}{4m} &= [1] \\ \frac{eB_0 t}{2m} &= [1]\end{aligned}$$