Spin

Spin state $|s\rangle$ is a normalized vector in \mathbb{C}^2 .

$$|s\rangle = \begin{pmatrix} c_+\\ c_- \end{pmatrix}, \quad |c_+|^2 + |c_-|^2 = 1$$

Spin measurement probabilities are the transition probabilities from $|s\rangle$ to an eigenstate.

For spin measurements in the z direction we have

$$\Pr\left(S_{z} = +\frac{\hbar}{2}\right) = |\langle z_{+}|s\rangle|^{2} = |c_{+}|^{2}$$

$$\Pr\left(S_{z} = -\frac{\hbar}{2}\right) = |\langle z_{-}|s\rangle|^{2} = |c_{-}|^{2}$$

where the eigenstates are

$$|z_+\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad |z_-\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

By definition of expectation value we have

$$\langle S_z \rangle = \frac{\hbar}{2} \Pr\left(S_z = +\frac{\hbar}{2}\right) - \frac{\hbar}{2} \Pr\left(S_z = -\frac{\hbar}{2}\right)$$

Rewrite as

$$\langle S_z \rangle = \frac{\hbar}{2} |\langle z_+ | s \rangle|^2 - \frac{\hbar}{2} |\langle z_- | s \rangle|^2$$

Rewrite again as

$$\langle S_z \rangle = \frac{\hbar}{2} \langle s | z_+ \rangle \langle z_+ | s \rangle - \frac{\hbar}{2} \langle s | z_- \rangle \langle z_- | s \rangle$$

Then by

$$\langle S_z \rangle = \langle s | S_z | s \rangle$$

$$S_z = \frac{\hbar}{2} |z_+\rangle \langle z_+| - \frac{\hbar}{2} |z_-\rangle \langle z_-| = \frac{\hbar}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

From the commutator

$$S_+S_- - S_-S_+ = 2\hbar S_z$$

we have

$$S_{+}S_{-} - S_{-}S_{+} = \hbar^{2}|z_{+}\rangle\langle z_{+}| - \hbar^{2}|z_{-}\rangle\langle z_{-}|$$

Rewrite as

$$S_+S_- - S_-S_+ = \hbar^2 |z_+\rangle \langle z_- | z_- \rangle \langle z_+ | - \hbar^2 |z_- \rangle \langle z_+ | z_+ \rangle \langle z_- |$$

Hence

$$S_{+} = \hbar |z_{+}\rangle \langle z_{-}| = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$S_{-} = \hbar |z_{-}\rangle \langle z_{+}| = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Then by

$$S_{+} = S_{x} + iS_{y}$$
$$S_{-} = S_{x} - iS_{y}$$

we obtain

$$S_{x} = \frac{S_{+} + S_{-}}{2} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$S_{y} = \frac{S_{+} - S_{-}}{2i} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

By solving for the eigenstates in

$$S_x | x_{\pm} \rangle = \pm \frac{\hbar}{2} | x_{\pm} \rangle$$
$$S_y | y_{\pm} \rangle = \pm \frac{\hbar}{2} | y_{\pm} \rangle$$

we obtain

$$|x_{+}\rangle = \frac{|z_{+}\rangle + |z_{-}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$
$$|x_{-}\rangle = \frac{|z_{+}\rangle - |z_{-}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

and

$$\begin{aligned} |y_{+}\rangle &= \frac{|z_{+}\rangle + i|z_{-}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}\\ |y_{-}\rangle &= \frac{|z_{+}\rangle - i|z_{-}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix}\end{aligned}$$

Expectation values for spin operators.

$$\langle S_x \rangle = \langle s | S_x | s \rangle = \frac{\hbar}{2} \left(c_+ c_-^* + c_+^* c_- \right)$$
$$\langle S_y \rangle = \langle s | S_y | s \rangle = \frac{i\hbar}{2} \left(c_+ c_-^* - c_+^* c_- \right)$$
$$\langle S_z \rangle = \langle s | S_z | s \rangle = \frac{\hbar}{2} \left(|c_+|^2 - |c_-|^2 \right)$$

Expected spin vector.

$$\langle \mathbf{S} \rangle = \begin{pmatrix} \langle S_x \rangle \\ \langle S_y \rangle \\ \langle S_z \rangle \end{pmatrix}$$

Consider the case of having determined $\langle {\bf S} \rangle$ by experiment. To convert $\langle {\bf S} \rangle$ to a spin state $|s\rangle,$ let

$$x = \frac{2}{\hbar} \langle S_x \rangle = \sin \theta \cos \phi$$
$$y = \frac{2}{\hbar} \langle S_y \rangle = \sin \theta \sin \phi$$
$$z = \frac{2}{\hbar} \langle S_z \rangle = \cos \theta$$

Then

$$|s\rangle = \begin{pmatrix} \cos(\theta/2)\\ \sin(\theta/2)\exp(i\phi) \end{pmatrix}$$

where

$$\cos(\theta/2) = \sqrt{\frac{\cos\theta + 1}{2}} = \sqrt{\frac{z+1}{2}}$$
$$\sin(\theta/2) = \sqrt{\frac{1-\cos\theta}{2}} = \sqrt{\frac{1-z}{2}}$$

and

$$\exp(i\phi) = \cos\phi + i\sin\phi = \frac{x+iy}{\sqrt{x^2+y^2}}$$

Spin angular momentum magnitude squared operator S^2 .

$$S^{2} = S_{x}^{2} + S_{y}^{2} + S_{z}^{2} = \frac{3\hbar^{2}}{4} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

Expectation value for S^2 .

$$\langle s|S^2|s\rangle = \frac{3\hbar^2}{4} \left(|c_+|^2 + |c_-|^2 \right) = \frac{3\hbar^2}{4}$$

The following commutator was used to derive S_x and S_y .

$$S_+S_- - S_-S_+ = 2\hbar S_z$$

The commutator is a consequence of the following wave equation for spin.

$$\hat{\mathbf{S}}\psi = (\mathbf{r} \times \hat{\mathbf{p}})\psi, \quad \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad \hat{\mathbf{p}} = -i\hbar \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$

Rewrite in component form.

$$\hat{S}_x \psi = -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) \psi$$
$$\hat{S}_y \psi = -i\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) \psi$$
$$\hat{S}_z \psi = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \psi$$

By computer algebra we have

$$(\hat{S}_y\hat{S}_z - \hat{S}_z\hat{S}_y)\psi = i\hbar\hat{S}_x\psi$$
$$(\hat{S}_z\hat{S}_x - \hat{S}_x\hat{S}_z)\psi = i\hbar\hat{S}_y\psi$$
$$(\hat{S}_x\hat{S}_y - \hat{S}_y\hat{S}_x)\psi = i\hbar\hat{S}_z\psi$$

Let

$$\hat{S}_{+} = \hat{S}_{x} + i\hat{S}_{y}$$
$$\hat{S}_{-} = \hat{S}_{x} - i\hat{S}_{y}$$

By computer algebra

$$(\hat{S}_{+}\hat{S}_{-} - \hat{S}_{-}\hat{S}_{+})\psi = 2\hbar\hat{S}_{z}\psi$$

Exercises

- 1. Verify spin operators and expectation values.
- 2. Let $|s\rangle$ be the following spin state.

$$|s\rangle = \begin{pmatrix} \frac{1}{3} - \frac{2}{3}i\\ \frac{2}{3} \end{pmatrix}$$

Verify that $|s\rangle$ is normalized and that

$$\langle \mathbf{S} \rangle = \langle s | \mathbf{S} | s \rangle = \frac{\hbar}{2} \begin{pmatrix} \frac{4}{9} \\ \frac{8}{9} \\ \frac{1}{9} \end{pmatrix}$$

.

where

$$\mathbf{S} = \begin{pmatrix} S_x \\ S_y \\ S_z \end{pmatrix}$$

Note: In component form we have

$$\langle s|\mathbf{S}|s\rangle = s^*_\beta S^{\alpha\beta}{}_\gamma s^\gamma$$

Eigenmath requires a transpose so that the β indices are adjacent.

$$\langle s|\mathbf{S}|s\rangle = s^*_\beta S^{\beta\alpha}{}_\gamma s^\gamma$$

3. Let $|s\rangle$ be the following spin state.

$$|s\rangle = \begin{pmatrix} \frac{1}{3} - \frac{2}{3}i\\ \frac{2}{3} \end{pmatrix}$$

Verify the following probabilities.

$$\Pr \left(S_x = +\frac{\hbar}{2} \right) = |\langle x_+ | s \rangle|^2 = \frac{13}{18}$$
$$\Pr \left(S_x = -\frac{\hbar}{2} \right) = |\langle x_- | s \rangle|^2 = \frac{5}{18}$$
$$\Pr \left(S_y = +\frac{\hbar}{2} \right) = |\langle y_+ | s \rangle|^2 = \frac{17}{18}$$
$$\Pr \left(S_y = -\frac{\hbar}{2} \right) = |\langle y_- | s \rangle|^2 = \frac{1}{18}$$
$$\Pr \left(S_z = +\frac{\hbar}{2} \right) = |\langle z_+ | s \rangle|^2 = \frac{5}{9}$$
$$\Pr \left(S_z = -\frac{\hbar}{2} \right) = |\langle z_- | s \rangle|^2 = \frac{4}{9}$$

4. Let $|s\rangle$ be the following spin state.

$$|s\rangle = \begin{pmatrix} \frac{1}{3} - \frac{2}{3}i\\ \frac{2}{3} \end{pmatrix}$$

Verify that for θ and ϕ determined by $|s\rangle$, the following spin state $|\chi\rangle$ is indistinguishable from $|s\rangle$.

$$|\chi\rangle = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \exp(i\phi) \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{5}}{3} \\ \frac{2+4i}{3\sqrt{5}} \end{pmatrix}$$

5. Verify the following commutators for the wave equation $\mathbf{S}\psi = (\mathbf{r} \times \mathbf{p})\psi$.

$$[S_y, S_z] = i\hbar S_x$$
$$[S_z, S_x] = i\hbar S_y$$
$$[S_x, S_y] = i\hbar S_z$$
$$[S_+, S_-] = 2\hbar S_z$$