Spin

Spin state $|s\rangle$ is a normalized vector in \mathbb{C}^{2}.

$$
|s\rangle=\binom{c_{+}}{c_{-}}, \quad\left|c_{+}\right|^{2}+\left|c_{-}\right|^{2}=1
$$

Spin measurement probabilities are the transition probabilities from $|s\rangle$ to an eigenstate.
For spin measurements in the z direction we have

$$
\begin{aligned}
& \operatorname{Pr}\left(S_{z}=+\frac{\hbar}{2}\right)=\left|\left\langle z_{+} \mid s\right\rangle\right|^{2}=\left|c_{+}\right|^{2} \\
& \operatorname{Pr}\left(S_{z}=-\frac{\hbar}{2}\right)=\left|\left\langle z_{-} \mid s\right\rangle\right|^{2}=\left|c_{-}\right|^{2}
\end{aligned}
$$

where the eigenstates are

$$
\left|z_{+}\right\rangle=\binom{1}{0}, \quad\left|z_{-}\right\rangle=\binom{0}{1}
$$

By definition of expectation value we have

$$
\left\langle S_{z}\right\rangle=\frac{\hbar}{2} \operatorname{Pr}\left(S_{z}=+\frac{\hbar}{2}\right)-\frac{\hbar}{2} \operatorname{Pr}\left(S_{z}=-\frac{\hbar}{2}\right)
$$

Rewrite as

$$
\left\langle S_{z}\right\rangle=\frac{\hbar}{2}\left|\left\langle z_{+} \mid s\right\rangle\right|^{2}-\frac{\hbar}{2}\left|\left\langle z_{-} \mid s\right\rangle\right|^{2}
$$

Rewrite again as

$$
\left\langle S_{z}\right\rangle=\frac{\hbar}{2}\left\langle s \mid z_{+}\right\rangle\left\langle z_{+} \mid s\right\rangle-\frac{\hbar}{2}\left\langle s \mid z_{-}\right\rangle\left\langle z_{-} \mid s\right\rangle
$$

Then by

$$
\left\langle S_{z}\right\rangle=\langle s| S_{z}|s\rangle
$$

we have

$$
S_{z}=\frac{\hbar}{2}\left|z_{+}\right\rangle\left\langle z_{+}\right|-\frac{\hbar}{2}\left|z_{-}\right\rangle\left\langle z_{-}\right|=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

From the commutator

$$
S_{+} S_{-}-S_{-} S_{+}=2 \hbar S_{z}
$$

we have

$$
S_{+} S_{-}-S_{-} S_{+}=\hbar^{2}\left|z_{+}\right\rangle\left\langle z_{+}\right|-\hbar^{2}\left|z_{-}\right\rangle\left\langle z_{-}\right|
$$

Rewrite as

$$
S_{+} S_{-}-S_{-} S_{+}=\hbar^{2}\left|z_{+}\right\rangle\left\langle z_{-} \mid z_{-}\right\rangle\left\langle z_{+}\right|-\hbar^{2}\left|z_{-}\right\rangle\left\langle z_{+} \mid z_{+}\right\rangle\left\langle z_{-}\right|
$$

Hence

$$
\begin{aligned}
& S_{+}=\hbar\left|z_{+}\right\rangle\left\langle z_{-}\right|=\hbar\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& S_{-}=\hbar\left|z_{-}\right\rangle\left\langle z_{+}\right|=\hbar\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Then by

$$
\begin{aligned}
& S_{+}=S_{x}+i S_{y} \\
& S_{-}=S_{x}-i S_{y}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& S_{x}=\frac{S_{+}+S_{-}}{2}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& S_{y}=\frac{S_{+}-S_{-}}{2 i}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
\end{aligned}
$$

By solving for the eigenstates in

$$
\begin{aligned}
S_{x}\left|x_{ \pm}\right\rangle & = \pm \frac{\hbar}{2}\left|x_{ \pm}\right\rangle \\
S_{y}\left|y_{ \pm}\right\rangle & = \pm \frac{\hbar}{2}\left|y_{ \pm}\right\rangle
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \left|x_{+}\right\rangle=\frac{\left|z_{+}\right\rangle+\left|z_{-}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\binom{1}{1} \\
& \left|x_{-}\right\rangle=\frac{\left|z_{+}\right\rangle-\left|z_{-}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\binom{1}{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|y_{+}\right\rangle=\frac{\left|z_{+}\right\rangle+i\left|z_{-}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\binom{1}{i} \\
& \left|y_{-}\right\rangle=\frac{\left|z_{+}\right\rangle-i\left|z_{-}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\binom{1}{-i}
\end{aligned}
$$

Expectation values for spin operators.

$$
\begin{aligned}
\left\langle S_{x}\right\rangle & =\langle s| S_{x}|s\rangle
\end{aligned}=\frac{\hbar}{2}\left(c_{+} c_{-}^{*}+c_{+}^{*} c_{-}\right) ~ 子 \begin{aligned}
\left\langle S_{y}\right\rangle & =\langle s| S_{y}|s\rangle
\end{aligned}=\frac{i \hbar}{2}\left(c_{+} c_{-}^{*}-c_{+}^{*} c_{-}\right) .
$$

Expected spin vector.

$$
\langle\mathbf{S}\rangle=\left(\begin{array}{l}
\left\langle S_{x}\right\rangle \\
\left\langle S_{y}\right\rangle \\
\left\langle S_{z}\right\rangle
\end{array}\right)
$$

Consider the case of having determined $\langle\mathbf{S}\rangle$ by experiment. To convert $\langle\mathbf{S}\rangle$ to a spin state $|s\rangle$, let

$$
\begin{aligned}
& x=\frac{2}{\hbar}\left\langle S_{x}\right\rangle=\sin \theta \cos \phi \\
& y=\frac{2}{\hbar}\left\langle S_{y}\right\rangle=\sin \theta \sin \phi \\
& z=\frac{2}{\hbar}\left\langle S_{z}\right\rangle=\cos \theta
\end{aligned}
$$

Then

$$
|s\rangle=\binom{\cos (\theta / 2)}{\sin (\theta / 2) \exp (i \phi)}
$$

where

$$
\begin{aligned}
& \cos (\theta / 2)=\sqrt{\frac{\cos \theta+1}{2}}=\sqrt{\frac{z+1}{2}} \\
& \sin (\theta / 2)=\sqrt{\frac{1-\cos \theta}{2}}=\sqrt{\frac{1-z}{2}}
\end{aligned}
$$

and

$$
\exp (i \phi)=\cos \phi+i \sin \phi=\frac{x+i y}{\sqrt{x^{2}+y^{2}}}
$$

Spin angular momentum magnitude squared operator S^{2}.

$$
S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2}=\frac{3 \hbar^{2}}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Expectation value for S^{2}.

$$
\langle s| S^{2}|s\rangle=\frac{3 \hbar^{2}}{4}\left(\left|c_{+}\right|^{2}+\left|c_{-}\right|^{2}\right)=\frac{3 \hbar^{2}}{4}
$$

The following commutator was used to derive S_{x} and S_{y}.

$$
S_{+} S_{-}-S_{-} S_{+}=2 \hbar S_{z}
$$

The commutator is a consequence of the following wave equation for spin.

$$
\hat{\mathbf{S}} \psi=(\mathbf{r} \times \hat{\mathbf{p}}) \psi, \quad \mathbf{r}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \hat{\mathbf{p}}=-i \hbar\left(\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right)
$$

Rewrite in component form.

$$
\begin{aligned}
& \hat{S}_{x} \psi=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \psi \\
& \hat{S}_{y} \psi=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \psi \\
& \hat{S}_{z} \psi=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \psi
\end{aligned}
$$

By computer algebra we have

$$
\begin{aligned}
\left(\hat{S}_{y} \hat{S}_{z}-\hat{S}_{z} \hat{S}_{y}\right) \psi & =i \hbar \hat{S}_{x} \psi \\
\left(\hat{S}_{z} \hat{S}_{x}-\hat{S}_{x} \hat{S}_{z}\right) \psi & =i \hbar \hat{S}_{y} \psi \\
\left(\hat{S}_{x} \hat{S}_{y}-\hat{S}_{y} \hat{S}_{x}\right) \psi & =i \hbar \hat{S}_{z} \psi
\end{aligned}
$$

Let

$$
\begin{aligned}
& \hat{S}_{+}=\hat{S}_{x}+i \hat{S}_{y} \\
& \hat{S}_{-}=\hat{S}_{x}-i \hat{S}_{y}
\end{aligned}
$$

By computer algebra

$$
\left(\hat{S}_{+} \hat{S}_{-}-\hat{S}_{-} \hat{S}_{+}\right) \psi=2 \hbar \hat{S}_{z} \psi
$$

Exercises

1. Verify spin operators and expectation values.
2. Let $|s\rangle$ be the following spin state.

$$
|s\rangle=\binom{\frac{1}{3}-\frac{2}{3} i}{\frac{2}{3}}
$$

Verify that $|s\rangle$ is normalized and that

$$
\langle\mathbf{S}\rangle=\langle s| \mathbf{S}|s\rangle=\frac{\hbar}{2}\left(\begin{array}{c}
\frac{4}{9} \\
\frac{8}{9} \\
\frac{1}{9}
\end{array}\right)
$$

where

$$
\mathbf{S}=\left(\begin{array}{c}
S_{x} \\
S_{y} \\
S_{z}
\end{array}\right)
$$

Note: In component form we have

$$
\langle s| \mathbf{S}|s\rangle=s_{\beta}^{*} S^{\alpha \beta}{ }_{\gamma} s^{\gamma}
$$

Eigenmath requires a transpose so that the β indices are adjacent.

$$
\langle s| \mathbf{S}|s\rangle=s_{\beta}^{*} S^{\beta \alpha}{ }_{\gamma} s^{\gamma}
$$

3. Let $|s\rangle$ be the following spin state.

$$
|s\rangle=\binom{\frac{1}{3}-\frac{2}{3} i}{\frac{2}{3}}
$$

Verify the following probabilities.

$$
\begin{aligned}
& \operatorname{Pr}\left(S_{x}=+\frac{\hbar}{2}\right)=\left|\left\langle x_{+} \mid s\right\rangle\right|^{2}=\frac{13}{18} \\
& \operatorname{Pr}\left(S_{x}=-\frac{\hbar}{2}\right)=\left|\left\langle x_{-} \mid s\right\rangle\right|^{2}=\frac{5}{18} \\
& \operatorname{Pr}\left(S_{y}=+\frac{\hbar}{2}\right)=\left|\left\langle y_{+} \mid s\right\rangle\right|^{2}=\frac{17}{18} \\
& \operatorname{Pr}\left(S_{y}=-\frac{\hbar}{2}\right)=\left|\left\langle y_{-} \mid s\right\rangle\right|^{2}=\frac{1}{18} \\
& \operatorname{Pr}\left(S_{z}=+\frac{\hbar}{2}\right)=\left|\left\langle z_{+} \mid s\right\rangle\right|^{2}=\frac{5}{9} \\
& \operatorname{Pr}\left(S_{z}=-\frac{\hbar}{2}\right)=\left|\left\langle z_{-} \mid s\right\rangle\right|^{2}=\frac{4}{9}
\end{aligned}
$$

4. Let $|s\rangle$ be the following spin state.

$$
|s\rangle=\binom{\frac{1}{3}-\frac{2}{3} i}{\frac{2}{3}}
$$

Verify that for θ and ϕ determined by $|s\rangle$, the following spin state $|\chi\rangle$ is indistinguishable from $|s\rangle$.

$$
|\chi\rangle=\binom{\cos (\theta / 2)}{\sin (\theta / 2) \exp (i \phi)}=\binom{\frac{\sqrt{5}}{3}}{\frac{2+4 i}{3 \sqrt{5}}}
$$

5. Verify the following commutators for the wave equation $\mathbf{S} \psi=(\mathbf{r} \times \mathbf{p}) \psi$.

$$
\begin{aligned}
{\left[S_{y}, S_{z}\right] } & =i \hbar S_{x} \\
{\left[S_{z}, S_{x}\right] } & =i \hbar S_{y} \\
{\left[S_{x}, S_{y}\right] } & =i \hbar S_{z} \\
{\left[S_{+}, S_{-}\right] } & =2 \hbar S_{z}
\end{aligned}
$$

