

Spin part 2

From the previous section we have for the z direction

$$\begin{aligned}\Pr(+)&=|\langle z_+|s\rangle|^2=\frac{1}{2}+\frac{1}{2}\cos\theta\\\Pr(-)&=|\langle z_-|s\rangle|^2=\frac{1}{2}-\frac{1}{2}\cos\theta\end{aligned}$$

If $|s\rangle$ is not an eigenstate then the result of measuring $|s\rangle$ is a random value. For example, let $\theta = \pi/3$. Then $\cos\theta = \frac{1}{2}$ and the probabilities are

$$\begin{aligned}\Pr(+)&=\frac{3}{4}\\\Pr(-)&=\frac{1}{4}\end{aligned}$$

Expected value is a useful statistic for analyzing stochastic data. By experimental design, “+” indicates a spin value of $+\frac{\hbar}{2}$ and “-” indicates a spin value of $-\frac{\hbar}{2}$. Hence the expected value is

$$\left(+\frac{\hbar}{2}\right)\Pr(+)+\left(-\frac{\hbar}{2}\right)\Pr(-)$$

For state $|s\rangle$ such that $\theta = \pi/3$ the expected value in the z direction is

$$\left(+\frac{\hbar}{2}\right)\frac{3}{4}+\left(-\frac{\hbar}{2}\right)\frac{1}{4}=\frac{\hbar}{4}$$

Expected values can be computed directly from $|s\rangle$ by introducing the following matrices.

$$S_x=\frac{\hbar}{2}\begin{pmatrix}0 & 1 \\ 1 & 0\end{pmatrix} \quad S_y=\frac{\hbar}{2}\begin{pmatrix}0 & -i \\ i & 0\end{pmatrix} \quad S_z=\frac{\hbar}{2}\begin{pmatrix}1 & 0 \\ 0 & -1\end{pmatrix}$$

Then

$$\langle S_x \rangle = \langle s | S_x | s \rangle \quad \langle S_y \rangle = \langle s | S_y | s \rangle \quad \langle S_z \rangle = \langle s | S_z | s \rangle$$

Returning to the example $\theta = \pi/3$ we have

$$|s\rangle = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2}e^{i\phi} \end{pmatrix}$$

Hence the expected value in the z direction is

$$\langle S_z \rangle = \langle s | S_z | s \rangle = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2}e^{i\phi} \end{pmatrix}^\dagger \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2}e^{i\phi} \end{pmatrix} = \frac{\hbar}{4}$$

Eigenmath script