## Snell's law

A light ray travels from $A$ in air to $B$ in glass by going through $C$ at the boundary.


Let $d_{1}$ be the distance from $A$ to $C$ and let $d_{2}$ be the distance from $C$ to $B$.

$$
d_{1}=\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}}, \quad d_{2}=\sqrt{\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}}
$$

Let $v_{1}$ be the velocity of light through air and let $v_{2}$ be the velocity of light through glass. Then the time $t$ to go from $A$ to $B$ is

$$
t=\frac{d_{1}}{v_{1}}+\frac{d_{2}}{v_{2}}
$$

Differentiate $t$ with respect to $y$ and set the result to zero to find $y$ that minimizes $t$. (The $x$ coordinate of $C$ is fixed by the boundary between air and glass.)

$$
\frac{d t}{d y}=\frac{y-y_{1}}{v_{1} d_{1}}+\frac{y-y_{2}}{v_{2} d_{2}}=0
$$

Rewrite as

$$
\frac{y-y_{1}}{v_{1} d_{1}}=\frac{y_{2}-y}{v_{2} d_{2}}
$$

Hence

$$
\begin{equation*}
\frac{\sin \theta_{1}}{v_{1}}=\frac{\sin \theta_{2}}{v_{2}} \tag{1}
\end{equation*}
$$

Multiply equation (1) by $c$ to obtain

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

where $n_{1}$ and $n_{2}$ are the refractive indices

$$
n_{1}=\frac{c}{v_{1}}, \quad n_{2}=\frac{c}{v_{2}}
$$

