Schrodinger from Lagrangian 1

Derive the Schrodinger equation
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from the Lagrangian
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L(i,2,t) = % — V(1)

Start with the path integral for an action S.

W(xyp, ty) = C’/ exp <%S(b, a)) WU(xq, ty) dx,
For a small time interval € = t, — t, we can use the approximation
S =c¢€lL

and write the path integral as

P(xp, t + €) —C/
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Substitute for L.
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¢<5’7b7t+ 6) = C/ exp {W - %EV (W?t)} ¢($a7t) dz,
Let
To=xp+1n, dr,=dn
and write

w(a:b,t—i-e):C/oo
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Substitute x for xy.
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¢($,t+€)=C/
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Because the exponential is highly oscillatory for large 7, most of the contribution to the
integral is from small 1. Hence use the approximation x + %n ~ z for small 7.
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s+ =C [ o (B~ 2 (an)) vl +u.0 dy

Use the approximation exp(y) =~ 1 4 y for the exponential of V.
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Y(z, t+¢€) = C’/_OO exp (Zg%z ) (1 — %eV(x,t)) Y(x+mn,t)dn
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Expand ¥ (x 4 n,t) as the power series
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to obtain
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Rewrite as .
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Integral I; is solved by the identity

/_OO exp(ay?) dy = (—g)é
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Integral I vanishes by the identity

/ yexp(ay®)dy =0
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Integral I3 is solved by the identity

/_OO y? exp(ay®) dy = (_g>% (_%)
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and substitute the solved integrals to obtain

Uz, t+e) = (1 — %GV) (¢ + the 82_w)

Let
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Expand the product.
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Expand ¥ (x,t + €) as the power series

Uz, t+€) =Y+ GZ_@?
to obtain aw he o
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Cancel v and multiply both 81des by ih/e.
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The term on the right vanishes for € = 0 hence
810 h? 0%
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See Feynman and Hibbs section 4-1.



