Rotating wave approximation

Let U(r,t) be the following wave function for a two state system.
U(r,t) = o (r)ca(t) exp(—£ Eqt) 4 1hy(r)cy(t) exp(— £ Ept)
Let H(r,t) be the Hamiltonian
H(r,t) = Hy(r) + Hy(r,1)
where

Hotbo = Eqth,  Hothy = Eythy, HoU = (E, + E,)¥

From the Schrodinger equation
0 N
h—V = HU
"ot

we obtain the differential equations
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Typically the diagonal elements vanish

(Wal Hi|t0a) = (| Hi[thp) = 0

and the differential equations become

%ca(t) = —%(@/}amlwb) exp(—iwot )cy(t) (1)
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Let H,(r,t) be the perturbation
Hy(r,t) = V(r) cos(wt)

Then ) R
(| Hilthp) = (alV[ths) [5 expliwt) 4 5 exp(—iwt)]

The rotating wave approximation discards the second term and asserts

(o Hilthy) = L(10a|V [1hy) exp(iwt) (3)



Substitute equation (3) into (1) and (2) to obtain

%Ca(t) _ _%iwau?wb) exp (i(w — wo)t) cp(t)
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Use Laplace transforms to solve for ¢,(t) with initial conditions ¢,(0) = 1 and ¢,(0) = 0.
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Symbol w, is the Rabi flopping frequency
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Use equation (2) and the solution for ¢,(t) to solve for ¢,(t).
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Rewrite w, as

= o\ et — 0 + |l V)]
and note that for
B (w0 = w)? > [(WalVIey)|
we have
wy A two — wl
Substitute (7) into (6) to obtain
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This is equivalent to ¢,(¢) obtained from first order perturbation expansion.
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