Quantum harmonic oscillator

Anything quadratic is called harmonic. - A. Zee
A harmonic oscillator is anything with potential energy proportional to displacement squared.

$$
V(x) \propto x^{2}
$$

For a quantum harmonic oscillator

$$
V(x)=\frac{m \omega^{2} x^{2}}{2}
$$

Hence the hamiltonian

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2}, \quad \hat{p}=-i \hbar \frac{d}{d x}
$$

We seek to solve the eigenvalue equation

$$
\hat{H} \psi_{n}=E_{n} \psi_{n}
$$

The solution is

$$
\psi_{n}(x)=C_{n} \exp \left(-\frac{m \omega x^{2}}{2 \hbar}\right) H_{n}(x \sqrt{m \omega / \hbar}), \quad n=0,1,2, \ldots
$$

C_{n} is the normalization constant

$$
C_{n}=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}}
$$

H_{n} is the nth hermite polynomial

$$
H_{n}(y)=(-1)^{2} \exp \left(y^{2}\right) \frac{d^{n}}{d y^{n}} \exp \left(-y^{2}\right)
$$

The eigenvalues are

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)
$$

The ladder operators are

$$
\begin{aligned}
\hat{a} & =\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{i \hat{p}}{m \omega}\right) \\
\hat{a}^{\dagger} & =\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i \hat{p}}{m \omega}\right)
\end{aligned}
$$

Operator \hat{a} lowers ψ_{n}.

$$
\hat{a} \psi_{n}=\sqrt{n} \psi_{n-1}
$$

Operator \hat{a}^{\dagger} raises ψ_{n}.

$$
\hat{a}^{\dagger} \psi_{n}=\sqrt{n+1} \psi_{n+1}
$$

This is how ψ_{n} can be obtained from ψ_{0}.

$$
\psi_{n}=\frac{\left(\hat{a}^{\dagger}\right)^{n}}{\sqrt{n!}} \psi_{0}
$$

The number operator is the result of lowering then raising.

$$
\hat{N}=\hat{a}^{\dagger} \hat{a}, \quad \hat{N} \psi_{n}=n \psi_{n}
$$

Exercises

1. Verify ψ_{n} and E_{n}.
2. Verify ladder operators.
3. Let

$$
\Psi(x)=\frac{\psi_{2}(x)+\psi_{3}(x)}{\sqrt{2}}
$$

Verify that

$$
\operatorname{Pr}(x \geq 0)=\int_{0}^{\infty} \Psi^{*} \Psi d x \approx 0.85
$$

4. Let

$$
m=6.64 \times 10^{-27} \text { kilogram }, \quad V\left(10^{-6} \text { meter }\right)=1 \text { electronvolt }
$$

Verify that

$$
\omega=\sqrt{\frac{2 V(x)}{m x^{2}}}=6.95 \times 10^{9} \text { second }^{-1}
$$

For $\Psi=\left(\psi_{2}+\psi_{3}\right) / \sqrt{2}$ verify that

$$
\begin{aligned}
\langle x\rangle & =\int_{-\infty}^{\infty} x \Psi^{*} \Psi d x=1.85 \times 10^{-9} \text { meter } \\
\langle E\rangle & =\int_{-\infty}^{\infty} \Psi^{*} \hat{H} \Psi d x=1.37 \times 10^{-5} \text { electronvolt }=\frac{E_{2}+E_{3}}{2}
\end{aligned}
$$

