# Sample |Y|^2 and project onto x-z plane Y(l,m) = (-1)^m sqrt((2 l + 1) / (4 pi) (l - m)! / (l + m)!) P(l,m) exp(i m phi) P(l,m,k) = test(m < 0, (-1)^m (l + m)! / (l - m)! P(l,-m), (sin(theta)/2)^m sum(k, 0, l - m, (-1)^k (l + m + k)! / (l - m - k)! / (m + k)! / k! * ((1 - cos(theta)) / 2)^k)) Y = float(Y(2,0)) N = 1000 A = zero(N,2) pie = float(pi) for(k,1,N, Theta = pie rand(), Phi = 2 pie rand(), a = eval(Y, theta, Theta, phi, Phi), r = a conj(a), x = r sin(Theta) cos(Phi), y = r sin(Theta) sin(Phi), z = r cos(Theta), A[k] = (x,z) ) xrange = (-1,1) / 2 yrange = (-1,1) / 2 trange = (1,N) draw(A[floor(k)],k)
Run