How Planck calculated h and k

Max Planck used two experimental results to calculate h and k in his 1901 paper "On the Law of Distribution of Energy in the Normal Spectrum." Although the quantum of action h is well known as Planck's constant, the use of k for Boltzmann's constant is also due to Planck. In addition, Planck was the first to compute a numerical value for k.

One of the experimental results Planck used was the difference $S_{100}-S_{0}$ determined by Ferdinand Kurlbaum in 1898 where S_{t} is the power radiated by a black body at t degrees Celsius.

$$
S_{100}-S_{0}=7.31 \times 10^{5} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

From the radiant power formula $S_{t}=(t+273)^{4} \sigma$ we have

$$
S_{100}-S_{0}=(100+273)^{4} \sigma-(0+273)^{4} \sigma=\left(373^{4}-273^{4}\right) \sigma
$$

Hence the Stefan-Boltzmann constant σ can be determined from $S_{100}-S_{0}$.

$$
\sigma=\frac{S_{100}-S_{0}}{373^{4}-273^{4}}
$$

The Stefan-Boltzmann law is the relation between energy density and temperature θ.

$$
\text { "energy per unit volume" }=\frac{4 \sigma \theta^{4}}{c}
$$

The use of θ for temperature looks strange but that is what scientists used at the time.
Using the Stefan-Boltzmann law and Kurlbaum's measurement, Planck calculated energy density for temperature $\theta=1$.

$$
\frac{4}{c} \times \frac{S_{100}-S_{0}}{373^{4}-273^{4}}=\frac{4}{3 \times 10^{10}} \times \frac{7.31 \times 10^{5}}{373^{4}-273^{4}}=7.061 \times 10^{-15} \mathrm{erg} \mathrm{~cm}^{-3}
$$

Planck's 1901 paper has the following formula (Equation 12) for energy distribution u as a function of frequency ν and temperature θ.

$$
u=\frac{8 \pi h \nu^{3}}{c^{3}} \frac{1}{e^{h \nu / k \theta}-1}
$$

The integral of u over all frequencies yields the total energy density u^{*}.

$$
u^{*}=\int_{0}^{\infty} u d \nu=\frac{8 \pi h}{c^{3}} \int_{0}^{\infty} \frac{\nu^{3}}{e^{h \nu / k \theta}-1} d \nu
$$

Planck used a series expansion to solve the integral for $\theta=1$. However, we will use the following identity.

$$
\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x=\frac{\pi^{4}}{15}
$$

By the change of variable $x=h \nu / k$ we have

$$
u^{*}=\frac{8 \pi h}{c^{3}}\left(\frac{k}{h}\right)^{4} \frac{\pi^{4}}{15}
$$

Planck then set u^{*} equal to the result from the Stefan-Bolztmann law.

$$
\frac{8 \pi h}{c^{3}}\left(\frac{k}{h}\right)^{4} \frac{\pi^{4}}{15}=7.061 \times 10^{-15}
$$

Hence

$$
\frac{k^{4}}{h^{3}}=7.061 \times 10^{-15} \times \frac{15 c^{3}}{8 \pi^{5}}=1.1682 \times 10^{15}
$$

The second experimental result Planck used was $\lambda_{m} \theta=0.294$ obtained in 1900 by Otto Lummer and Ernst Pringsheim. Symbol λ_{m} is the wavelength in centimeters of peak radiant energy for a black body at temperature θ in Kelvin.

Planck's 1901 paper has the following formula (Equation 13) for energy distribution E as a function of wavelength λ and temperature θ.

$$
E=\frac{8 \pi c h}{\lambda^{5}} \frac{1}{e^{c h / k \lambda \theta}-1}
$$

Planck solves $d E / d \lambda=0$ to obtain λ_{m} which we will now do step by step. First, compute $d E / d \lambda$.

$$
\frac{d E}{d \lambda}=\frac{8 \pi c^{2} h^{2}}{k \lambda^{7} \theta} \frac{e^{c h / k \lambda \theta}}{\left(e^{c h / k \lambda \theta}-1\right)^{2}}-\frac{40 \pi c h}{\lambda^{6}} \frac{1}{e^{c h / k \lambda \theta}-1}
$$

Set $d E / d \lambda=0$ to obtain

$$
\frac{8 \pi c^{2} h^{2}}{k \lambda^{7} \theta} \frac{e^{c h / k \lambda \theta}}{\left(e^{c h / k \lambda \theta}-1\right)^{2}}=\frac{40 \pi c h}{\lambda^{6}} \frac{1}{e^{c h / k \lambda \theta}-1}
$$

Then by cancellation of terms

$$
\frac{c h}{5 k \lambda \theta} \frac{e^{c h / k \lambda \theta}}{e^{c h / k \lambda \theta}-1}=1
$$

Multiply both sides by $e^{c h / k \lambda \theta}-1$.

$$
\frac{c h}{5 k \lambda \theta} e^{c h / k \lambda \theta}=e^{c h / k \lambda \theta}-1
$$

Subtract $e^{c h / k \lambda \theta}$ from both sides.

$$
\left(\frac{c h}{5 k \lambda \theta}-1\right) e^{c h / k \lambda \theta}=-1
$$

Multiply both sides by -1 to obtain Planck's result.

$$
\left(1-\frac{c h}{5 k \lambda \theta}\right) e^{c h / k \lambda \theta}=1
$$

Planck then provides the following numerical solution.

$$
\frac{c h}{k \lambda \theta}=4.9651
$$

Then using $c=3 \times 10^{10}$ and $\lambda \theta=0.294$ Planck calculates

$$
\frac{h}{k}=4.9651 \times \frac{\lambda \theta}{c}=4.9651 \times \frac{0.294}{3 \times 10^{10}}=4.866 \times 10^{-11}
$$

Planck then solves for k. Plug $h / k=4.866 \times 10^{-11}$ into the formula for k^{4} / h^{3} to obtain

$$
k=1.1682 \times 10^{15} \times \frac{h^{3}}{k^{3}}=1.1682 \times 10^{15} \times\left(4.866 \times 10^{-11}\right)^{3}=1.346 \times 10^{-16} \operatorname{erg~K}
$$

Then calculate h directly from k.

$$
h=k \times 4.866 \times 10^{-11}=6.55 \times 10^{-27} \mathrm{erg} \mathrm{~s}
$$

