
Muon pair production

Muon pair production is the interaction e− + e+ → µ− + µ+.

e+e−

µ−

µ+

θ

Define the following momentum vectors and spinors. Symbol E is beam energy. Symbol p is
electron momentum p =

√
E2 −m2 where m is electron mass 0.51MeV. Symbol ρ is muon

mementum ρ =
√
E2 −M2 where M is muon mass 106MeV. Polar angle θ is the observed

scattering angle. Azimuth angle ϕ cancels out in scattering calculations.

p1 =


E
0
0
p


inbound e−

u11 =


E +m

0
p
0


inbound e−
spin up

u12 =


0

E +m
0
−p


inbound e−
spin down

p2 =


E
0
0
−p


inbound e+

v21 =


−p
0

E +m
0


inbound e+
spin up

v22 =


0
p
0

E +m


inbound e+
spin down

p3 =


E

ρ sin θ cosϕ
ρ sin θ sinϕ

ρ cos θ


outbound µ−

u31 =


E +M

0
pz3

px3 + ipy3


outbound µ−

spin up

u32 =


0

E +M
px3 − ipy3
−pz3


outbound µ−

spin down

p4 =


E

−ρ sin θ cosϕ
−ρ sin θ sinϕ

−ρ cos θ


outbound µ+

v41 =


pz4

px4 + ipy4
E +M

0


outbound µ+

spin up

v42 =


px4 − ipy4
−pz4
0

E +M


outbound µ+

spin down

The spinors are not individually normalized. Instead, a combined spinor normalization
constant N = (E +m)2(E +M)2 will be used.
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This is the probability density for spin state abcd. The formula is derived from Feynman
diagrams for muon pair production.∣∣Mabcd

∣∣2 = e4

Ns2
∣∣(ū3cγµv4d)(v̄2bγ

µu1a)
∣∣2

Symbol e is electron charge and

s = (p1 + p2)
2 = 4E2

The expected probability density ⟨|M|2⟩ is computed by summing |Mabcd|2 over all spin
states and dividing by the number of inbound states. There are four inbound states.

⟨|M|2⟩ = 1

4

2∑
a=1

2∑
b=1

2∑
c=1

2∑
d=1

∣∣Mabcd

∣∣2
=

e4

4Ns2

2∑
a=1

2∑
b=1

2∑
c=1

2∑
d=1

∣∣(ū3cγµv4d)(v̄2bγ
µu1a)

∣∣2
The Casimir trick uses matrix arithmetic to compute ⟨|M|2⟩.

⟨|M|2⟩ = e4

4s2
Tr
(
(/p3 +M)γµ(/p4 −M)γν

)
Tr
(
(/p2 −m)γµ(/p1 +m)γν

)
The result is

⟨|M|2⟩ = e4
(
1 + cos2 θ +

m2 +M2

E2
sin2 θ +

m2M2

E4
cos2 θ

)
For high energy experiments E ≫ M a useful approximation is

⟨|M|2⟩ = e4
(
1 + cos2 θ

)
Cross section

The differential cross section is

dσ

dΩ
=

⟨|M|2⟩
4(4πε0)2s

, s = (p1 + p2)
2 = 4E2

For high energy experiments we have

⟨|M|2⟩ = e4
(
1 + cos2 θ

)
Hence for high energy experiments

dσ

dΩ
=

e4

4(4πε0)2s

(
1 + cos2 θ

)
Noting that

e2 = 4πε0αℏc

2



we have
dσ

dΩ
=

α2(ℏc)2

4s

(
1 + cos2 θ

)
Noting that

dΩ = sin θ dθ dϕ

we also have

dσ =
α2(ℏc)2

4s

(
1 + cos2 θ

)
sin θ dθ dϕ

Let S(θ1, θ2) be the following surface integral of dσ.

S(θ1, θ2) =

∫ 2π

0

∫ θ2

θ1

dσ

The solution is

S(θ1, θ2) =
2πα2(ℏc)2

4s

(
I(θ2)− I(θ1)

)
where

I(θ) = −cos3 θ

3
− cos θ

The cumulative distribution function is

F (θ) =
S(0, θ)

S(0, π)
=

I(θ)− I(0)

I(π)− I(0)
= −cos3 θ

8
− 3 cos θ

8
+

1

2
, 0 ≤ θ ≤ π

The probability of observing scattering events in the interval θ1 to θ2 is

P (θ1 ≤ θ ≤ θ2) = F (θ2)− F (θ1)

Let N be the total number of scattering events from an experiment. Then the number of
scattering events in the interval θ1 to θ2 is predicted to be

NP (θ1 ≤ θ ≤ θ2)

The probability density function is

f(θ) =
dF (θ)

dθ
=

3

8

(
1 + cos2 θ

)
sin θ

Data from SLAC PEP experiment

See www.hepdata.net/record/ins216031, Table 1, s = (29.0GeV)2.
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x y
−0.925 67.08
−0.85 58.67
−0.75 54.66
−0.65 51.72
−0.55 43.70
−0.45 41.12
−0.35 39.71
−0.25 35.34
−0.15 33.35
−0.05 34.69
0.05 34.05
0.15 34.48
0.25 34.66
0.35 35.23
0.45 35.60
0.55 40.13
0.65 42.56
0.75 46.37
0.85 49.28
0.925 55.70

Data x and y have the following relationship with the differential cross section formula.

x = cos θ, y = s
dσ

d cos θ
= 2πs

dσ

dΩ

The cross section formula is

dσ

dΩ
=

α2

4s

(
1 + cos2 θ

)
× (ℏc)2

To compute predicted values ŷ, multiply by 1037 to convert square meters to nanobarns.

ŷ = 2πs
dσ

dΩ
=

πα2

2

(
1 + x2

)
× (ℏc)2 × 1037

The following table shows predicted values ŷ.
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x y ŷ
−0.925 67.08 60.44
−0.85 58.67 56.10
−0.75 54.66 50.89
−0.65 51.72 46.33
−0.55 43.70 42.42
−0.45 41.12 39.17
−0.35 39.71 36.56
−0.25 35.34 34.61
−0.15 33.35 33.30
−0.05 34.69 32.65
0.05 34.05 32.65
0.15 34.48 33.30
0.25 34.66 34.61
0.35 35.23 36.56
0.45 35.60 39.17
0.55 40.13 42.42
0.65 42.56 46.33
0.75 46.37 50.89
0.85 49.28 56.10
0.925 55.70 60.44

The coefficient of determination R2 measures how well predicted values fit the data.

R2 = 1−
∑

(y − ŷ)2∑
(y − ȳ)2

= 0.87

The result indicates that the model dσ explains 87% of the variance in the data.

Electroweak model

The following differential cross section formula from electroweak theory results in a better
fit to the data.1

dσ

dΩ
= F (s)

(
1 + cos2 θ

)
+G(s) cos θ

where

F (s) =
α2

4s

(
1 +

g2V√
2π

(
m2

Z

s−m2
Z

)(
sG

α

)
+

(g2A + g2V )
2

8π2

(
m2

Z

s−m2
Z

)2(
sG

α

)2
)

G(s) =
α2

4s

(√
2g2A
π

(
m2

Z

s−m2
Z

)(
sG

α

)
+

g2Ag
2
V

π2

(
m2

Z

s−m2
Z

)2(
sG

α

)2
)

1F. Mandl and G. Shaw, Quantum Field Theory Revised Edition, 316.
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and

gA = −0.5

gV = −0.0348

mZ = 91.17GeV

G = 1.166× 10−5GeV−2

The corresponding formula for ŷ is

ŷ = 2π
[
F (s)(1 + x2) +G(s)x

]
× (ℏc)2 × 1037

where
√
s = 29GeV is the center of mass collision energy. Here are the predicted values ŷ

based on the above formula.

x y ŷ
−0.925 67.08 65.59
−0.85 58.67 60.84
−0.75 54.66 55.07
−0.65 51.72 49.96
−0.55 43.70 45.49
−0.45 41.12 41.69
−0.35 39.71 38.53
−0.25 35.34 36.02
−0.15 33.35 34.17
−0.05 34.69 32.97
0.05 34.05 32.42
0.15 34.48 32.53
0.25 34.66 33.28
0.35 35.23 34.69
0.45 35.60 36.75
0.55 40.13 39.47
0.65 42.56 42.83
0.75 46.37 46.85
0.85 49.28 51.52
0.925 55.70 55.45

The coefficient of determination R2 is

R2 = 1−
∑

(y − ŷ)2∑
(y − ȳ)2

= 0.98

The result indicates that electroweak theory explains 98% of the variance in the data.

Notes

Here are a few notes about how the demo script works.
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In component notation, traces are sums over a repeated index, in this case α.

Tr
(
(/p3 +M)γµ(/p4 −M)γν

)
= (/p3 +M)αβγ

µβ
ρ(/p4 −M)ρσγ

νσ
α

Tr
(
(/p2 −m)γµ(/p1 +m)γν

)
= (/p2 −m)αβγµ

β
ρ(/p1 +m)ρσγν

σ
α

To convert the above formulas to Eigenmath code, the γ tensors need to be transposed so
that repeated indices are adjacent to each other. Also, multiply γµ by the metric tensor to
lower the index.

γβµ
ρ → gammaT = transpose(gamma)

γβ
µρ → gammaL = transpose(dot(gmunu,gamma))

Define the following 4× 4 matrices.

(/p1 +m) → X1 = pslash1 + m I

(/p2 −m) → X2 = pslash2 - m I

(/p3 +M) → X3 = pslash3 + M I

(/p4 −M) → X4 = pslash4 - M I

Then

(/p3 +M)αβγ
µβ

ρ(/p4 −M)ρσγ
νσ

α → T1 = contract(dot(X3,gammaT,X4,gammaT),1,4)

(/p2 −m)αβγµ
β
ρ(/p1 +m)ρσγν

σ
α → T2 = contract(dot(X2,gammaL,X1,gammaL),1,4)

Next, multiply matrices and sum over repeated indices. The dot function sums over ν then
the contract function sums over µ. The transpose makes the ν indices adjacent as required
by the dot function.

Tr(· · · γµ · · · γν) Tr(· · · γµ · · · γν) → contract(dot(T1,transpose(T2)))
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