Muon pair production

Muon pair production is the interaction $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$.

Define the following momentum vectors and spinors. Symbol E is beam energy. Symbol p is electron momentum $p=\sqrt{E^{2}-m^{2}}$ where m is electron mass 0.51 MeV . Symbol ρ is muon mementum $\rho=\sqrt{E^{2}-M^{2}}$ where M is muon mass 106 MeV . Polar angle θ is the observed scattering angle. Azimuth angle ϕ cancels out in scattering calculations.

$$
\begin{aligned}
& p_{1}=\left(\begin{array}{c}
E \\
0 \\
0 \\
p
\end{array}\right) \quad u_{11}=\left(\begin{array}{c}
E+m \\
0 \\
p \\
0
\end{array}\right) \\
& p_{2}=\left(\begin{array}{c}
E \\
0 \\
0 \\
-p
\end{array}\right) \\
& \text { inbound } e^{+} \\
& p_{3}=\left(\begin{array}{c}
E \\
\rho \sin \theta \cos \phi \\
\rho \sin \theta \sin \phi \\
\rho \cos \theta \\
\text { outbound } \mu^{-}
\end{array}\right) \\
& p_{4}=\left(\begin{array}{c}
E \\
-\rho \sin \theta \cos \phi \\
-\rho \sin \theta \sin \phi \\
-\rho \cos \theta \\
\text { outbound } \mu^{+}
\end{array}\right) \\
& v_{21}=\left(\begin{array}{c}
-p \\
0 \\
E+m \\
0 \\
\text { inbound } e^{+} \\
\text {spin up }
\end{array}\right) \\
& u_{12}=\left(\begin{array}{c}
0 \\
E+m \\
0 \\
-p
\end{array}\right) \\
& v_{22}=\left(\begin{array}{c}
0 \\
p \\
0 \\
E+m
\end{array}\right) \\
& u_{31}=\left(\begin{array}{c}
E+M \\
0 \\
p_{3}^{z} \\
p_{3}^{x}+i p_{3}^{y} \\
\text { outbound } \mu^{-} \\
\text {spin up }
\end{array}\right) \\
& u_{32}=\left(\begin{array}{c}
0 \\
E+M \\
p_{3}^{x}-i p_{3}^{y} \\
-p_{3}^{z}
\end{array}\right) \\
& v_{42}=\left(\begin{array}{c}
p_{4}^{x}-i p_{4}^{y} \\
-p_{4}^{z} \\
0 \\
E+M
\end{array}\right)
\end{aligned}
$$

The spinors are not individually normalized. Instead, a combined spinor normalization constant $N=(E+m)^{2}(E+M)^{2}$ will be used.

This is the probability density for spin state $a b c d$. The formula is derived from Feynman diagrams for muon pair production.

$$
\left|\mathcal{M}_{a b c d}\right|^{2}=\frac{e^{4}}{N s^{2}}\left|\left(\bar{u}_{3 c} \gamma_{\mu} v_{4 d}\right)\left(\bar{v}_{2 b} \gamma^{\mu} u_{1 a}\right)\right|^{2}
$$

Symbol e is electron charge and

$$
s=\left(p_{1}+p_{2}\right)^{2}=4 E^{2}
$$

The expected probability density $\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle$ is computed by summing $\left|\mathcal{M}_{a b c d}\right|^{2}$ over all spin states and dividing by the number of inbound states. There are four inbound states.

$$
\begin{aligned}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle & =\frac{1}{4} \sum_{a=1}^{2} \sum_{b=1}^{2} \sum_{c=1}^{2} \sum_{d=1}^{2}\left|\mathcal{M}_{a b c d}\right|^{2} \\
& =\frac{e^{4}}{4 N s^{2}} \sum_{a=1}^{2} \sum_{b=1}^{2} \sum_{c=1}^{2} \sum_{d=1}^{2}\left|\left(\bar{u}_{3 c} \gamma_{\mu} v_{4 d}\right)\left(\bar{v}_{2 b} \gamma^{\mu} u_{1 a}\right)\right|^{2}
\end{aligned}
$$

The Casimir trick uses matrix arithmetic to compute $\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle$.

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{e^{4}}{4 s^{2}} \operatorname{Tr}\left(\left(\not p_{3}+M\right) \gamma^{\mu}\left(\not p_{4}-M\right) \gamma^{\nu}\right) \operatorname{Tr}\left(\left(\not p_{2}-m\right) \gamma_{\mu}\left(\not p_{1}+m\right) \gamma_{\nu}\right)
$$

The result is

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=e^{4}\left(1+\cos ^{2} \theta+\frac{m^{2}+M^{2}}{E^{2}} \sin ^{2} \theta+\frac{m^{2} M^{2}}{E^{4}} \cos ^{2} \theta\right)
$$

For high energy experiments $E \gg M$ a useful approximation is

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=e^{4}\left(1+\cos ^{2} \theta\right)
$$

Cross section

The differential cross section is

$$
\frac{d \sigma}{d \Omega}=\frac{\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle}{4\left(4 \pi \varepsilon_{0}\right)^{2} s}, \quad s=\left(p_{1}+p_{2}\right)^{2}=4 E^{2}
$$

For high energy experiments we have

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=e^{4}\left(1+\cos ^{2} \theta\right)
$$

Hence for high energy experiments

$$
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{4\left(4 \pi \varepsilon_{0}\right)^{2} s}\left(1+\cos ^{2} \theta\right)
$$

Noting that

$$
e^{2}=4 \pi \varepsilon_{0} \alpha \hbar c
$$

we have

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}(\hbar c)^{2}}{4 s}\left(1+\cos ^{2} \theta\right)
$$

Noting that

$$
d \Omega=\sin \theta d \theta d \phi
$$

we also have

$$
d \sigma=\frac{\alpha^{2}(\hbar c)^{2}}{4 s}\left(1+\cos ^{2} \theta\right) \sin \theta d \theta d \phi
$$

Let $S\left(\theta_{1}, \theta_{2}\right)$ be the following surface integral of $d \sigma$.

$$
S\left(\theta_{1}, \theta_{2}\right)=\int_{0}^{2 \pi} \int_{\theta_{1}}^{\theta_{2}} d \sigma
$$

The solution is

$$
S\left(\theta_{1}, \theta_{2}\right)=\frac{2 \pi \alpha^{2}(\hbar c)^{2}}{4 s}\left(I\left(\theta_{2}\right)-I\left(\theta_{1}\right)\right)
$$

where

$$
I(\theta)=-\frac{\cos ^{3} \theta}{3}-\cos \theta
$$

The cumulative distribution function is

$$
F(\theta)=\frac{S(0, \theta)}{S(0, \pi)}=\frac{I(\theta)-I(0)}{I(\pi)-I(0)}=-\frac{\cos ^{3} \theta}{8}-\frac{3 \cos \theta}{8}+\frac{1}{2}, \quad 0 \leq \theta \leq \pi
$$

The probability of observing scattering events in the interval θ_{1} to θ_{2} is

$$
P\left(\theta_{1} \leq \theta \leq \theta_{2}\right)=F\left(\theta_{2}\right)-F\left(\theta_{1}\right)
$$

Let N be the total number of scattering events from an experiment. Then the number of scattering events in the interval θ_{1} to θ_{2} is predicted to be

$$
N P\left(\theta_{1} \leq \theta \leq \theta_{2}\right)
$$

The probability density function is

$$
f(\theta)=\frac{d F(\theta)}{d \theta}=\frac{3}{8}\left(1+\cos ^{2} \theta\right) \sin \theta
$$

Data from SLAC PEP experiment

See www.hepdata.net/record/ins216031, Table 1, $s=(29.0 \mathrm{GeV})^{2}$.

x	y
-0.925	67.08
-0.85	58.67
-0.75	54.66
-0.65	51.72
-0.55	43.70
-0.45	41.12
-0.35	39.71
-0.25	35.34
-0.15	33.35
-0.05	34.69
0.05	34.05
0.15	34.48
0.25	34.66
0.35	35.23
0.45	35.60
0.55	40.13
0.65	42.56
0.75	46.37
0.85	49.28
0.925	55.70

Data x and y have the following relationship with the differential cross section formula.

$$
x=\cos \theta, \quad y=s \frac{d \sigma}{d \cos \theta}=2 \pi s \frac{d \sigma}{d \Omega}
$$

The cross section formula is

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right) \times(\hbar c)^{2}
$$

To compute predicted values \hat{y}, multiply by 10^{37} to convert square meters to nanobarns.

$$
\hat{y}=2 \pi s \frac{d \sigma}{d \Omega}=\frac{\pi \alpha^{2}}{2}\left(1+x^{2}\right) \times(\hbar c)^{2} \times 10^{37}
$$

The following table shows predicted values \hat{y}.

x	y	\hat{y}
-0.925	67.08	60.44
-0.85	58.67	56.10
-0.75	54.66	50.89
-0.65	51.72	46.33
-0.55	43.70	42.42
-0.45	41.12	39.17
-0.35	39.71	36.56
-0.25	35.34	34.61
-0.15	33.35	33.30
-0.05	34.69	32.65
0.05	34.05	32.65
0.15	34.48	33.30
0.25	34.66	34.61
0.35	35.23	36.56
0.45	35.60	39.17
0.55	40.13	42.42
0.65	42.56	46.33
0.75	46.37	50.89
0.85	49.28	56.10
0.925	55.70	60.44

The coefficient of determination R^{2} measures how well predicted values fit the data.

$$
R^{2}=1-\frac{\sum(y-\hat{y})^{2}}{\sum(y-\bar{y})^{2}}=0.87
$$

The result indicates that the model $d \sigma$ explains 87% of the variance in the data.

Electroweak model

The following differential cross section formula from electroweak theory results in a better fit to the data. ${ }^{1}$

$$
\frac{d \sigma}{d \Omega}=F(s)\left(1+\cos ^{2} \theta\right)+G(s) \cos \theta
$$

where

$$
\begin{aligned}
& F(s)=\frac{\alpha^{2}}{4 s}\left(1+\frac{g_{V}^{2}}{\sqrt{2} \pi}\left(\frac{m_{Z}^{2}}{s-m_{Z}^{2}}\right)\left(\frac{s G}{\alpha}\right)+\frac{\left(g_{A}^{2}+g_{V}^{2}\right)^{2}}{8 \pi^{2}}\left(\frac{m_{Z}^{2}}{s-m_{Z}^{2}}\right)^{2}\left(\frac{s G}{\alpha}\right)^{2}\right) \\
& G(s)=\frac{\alpha^{2}}{4 s}\left(\frac{\sqrt{2} g_{A}^{2}}{\pi}\left(\frac{m_{Z}^{2}}{s-m_{Z}^{2}}\right)\left(\frac{s G}{\alpha}\right)+\frac{g_{A}^{2} g_{V}^{2}}{\pi^{2}}\left(\frac{m_{Z}^{2}}{s-m_{Z}^{2}}\right)^{2}\left(\frac{s G}{\alpha}\right)^{2}\right)
\end{aligned}
$$

[^0]and
\[

$$
\begin{aligned}
g_{A} & =-0.5 \\
g_{V} & =-0.0348 \\
m_{Z} & =91.17 \mathrm{GeV} \\
G & =1.166 \times 10^{-5} \mathrm{GeV}^{-2}
\end{aligned}
$$
\]

The corresponding formula for \hat{y} is

$$
\hat{y}=2 \pi\left[F(s)\left(1+x^{2}\right)+G(s) x\right] \times(\hbar c)^{2} \times 10^{37}
$$

where $\sqrt{s}=29 \mathrm{GeV}$ is the center of mass collision energy. Here are the predicted values \hat{y} based on the above formula.

x	y	\hat{y}
-0.925	67.08	65.59
-0.85	58.67	60.84
-0.75	54.66	55.07
-0.65	51.72	49.96
-0.55	43.70	45.49
-0.45	41.12	41.69
-0.35	39.71	38.53
-0.25	35.34	36.02
-0.15	33.35	34.17
-0.05	34.69	32.97
0.05	34.05	32.42
0.15	34.48	32.53
0.25	34.66	33.28
0.35	35.23	34.69
0.45	35.60	36.75
0.55	40.13	39.47
0.65	42.56	42.83
0.75	46.37	46.85
0.85	49.28	51.52
0.925	55.70	55.45

The coefficient of determination R^{2} is

$$
R^{2}=1-\frac{\sum(y-\hat{y})^{2}}{\sum(y-\bar{y})^{2}}=0.98
$$

The result indicates that electroweak theory explains 98% of the variance in the data.

Notes

Here are a few notes about how the demo script works.

In component notation, traces are sums over a repeated index, in this case α.

$$
\begin{aligned}
\operatorname{Tr}\left(\left(\not p_{3}+M\right) \gamma^{\mu}\left(\not{ }_{4}-M\right) \gamma^{\nu}\right) & =\left(\not p_{3}+M\right)^{\alpha}{ }_{\beta} \gamma^{\mu \beta}{ }_{\rho}\left(\not p_{4}-M\right)^{\rho}{ }_{\sigma} \gamma^{\nu \sigma}{ }_{\alpha} \\
\operatorname{Tr}\left(\left(\not p_{2}-m\right) \gamma_{\mu}\left(\not p_{1}+m\right) \gamma_{\nu}\right) & =\left(\not p_{2}-m\right)^{\alpha}{ }_{\beta} \gamma_{\mu}{ }^{\beta}{ }_{\rho}\left(\not p_{1}+m\right)^{\rho}{ }_{\sigma} \gamma_{\nu}^{\sigma}{ }_{\alpha}
\end{aligned}
$$

To convert the above formulas to Eigenmath code, the γ tensors need to be transposed so that repeated indices are adjacent to each other. Also, multiply γ^{μ} by the metric tensor to lower the index.

$$
\begin{aligned}
& \gamma^{\beta \mu}{ }_{\rho} \rightarrow \text { gammaT }=\text { transpose(gamma) } \\
& \gamma^{\beta}{ }_{\mu \rho} \rightarrow \text { gammaL }=\text { transpose(dot(gmunu, gamma)) }
\end{aligned}
$$

Define the following 4×4 matrices.

$$
\begin{aligned}
& \left(\not p_{1}+m\right) \rightarrow X 1=\mathrm{pslash} 1+\mathrm{mI} \\
& \left(\not p_{2}-m\right) \rightarrow X 2=\text { pslash2 }-m I \\
& \left(\not p_{3}+M\right) \rightarrow X 3=\mathrm{pslash} 3+\mathrm{MI} \\
& \left(\not p_{4}-M\right) \quad \rightarrow \quad \mathrm{X} 4=\mathrm{pslash} 4-\mathrm{M} \mathrm{I}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(\not p_{3}+M\right)^{\alpha}{ }_{\beta} \gamma^{\mu \beta}{ }_{\rho}\left(\not p_{4}-M\right)^{\rho}{ }_{\sigma} \gamma^{\nu \sigma}{ }_{\alpha} & \rightarrow \mathrm{T} 1=\operatorname{contract}(\operatorname{dot}(\mathrm{X} 3, \operatorname{gammaT}, \mathrm{X} 4, \text { gammaT),1,4) } \\
\left(\not p_{2}-m\right)^{\alpha}{ }_{\beta} \gamma_{\mu}{ }^{\beta}{ }_{\rho}\left(\not p_{1}+m\right)^{\rho}{ }_{\sigma} \gamma_{\nu}{ }^{\sigma}{ }_{\alpha} & \rightarrow \mathrm{T} 2=\operatorname{contract}(\operatorname{dot}(\mathrm{X} 2, \text { gammaL, X1,gammaL), } 1,4)
\end{aligned}
$$

Next, multiply matrices and sum over repeated indices. The dot function sums over ν then the contract function sums over μ. The transpose makes the ν indices adjacent as required by the dot function.

$$
\operatorname{Tr}\left(\cdots \gamma^{\mu} \cdots \gamma^{\nu}\right) \operatorname{Tr}\left(\cdots \gamma_{\mu} \cdots \gamma_{\nu}\right) \quad \rightarrow \quad \text { contract (dot(T1,transpose(T2))) }
$$

[^0]: ${ }^{1}$ F. Mandl and G. Shaw, Quantum Field Theory Revised Edition, 316.

