-- Muon pair production data from SLAC PEP -- Compute R-squared for electroweak model -- www.hepdata.net/record/ins216031 (Table 1, 29.0 GeV) N = 20 -- number of observations -- x is cos(theta) x = ( -0.925, -0.85, -0.75, -0.65, -0.55, -0.45, -0.35, -0.25, -0.15, -0.05, 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.925) -- y is (2E)^2 times differential cross section (2E = 29 GeV) y = ( 67.08, 58.67, 54.66, 51.72, 43.7, 41.12, 39.71, 35.34, 33.35, 34.69, 34.05, 34.48, 34.66, 35.23, 35.6, 40.13, 42.56, 46.37, 49.28, 55.7) y = y "nanobarn" "GeV"^2 "Observed cross section per bin" y "Predicted cross section" pi = float(pi) alpha = 7.2973525693 10^(-3) hbar = 6.582119569 10^(-25) "GeV" "second" c = 299792458.0 "meter" / "second" C = 10^37 "nanobarn" / "meter"^2 -- convert square meters to nanobarns gA = -0.5 gV = -0.0348 mZ = 91.17 "GeV" G1 = 1.166 10^(-5) "GeV"^(-2) -- Fermi coupling constant s = (29.0 "GeV")^2 F = alpha^2/4 (1 + gV^2/(sqrt(2) pi) mZ^2/(s - mZ^2) s G1/alpha + (gA^2 + gV^2)^2/(8 pi^2) (mZ^2/(s - mZ^2))^2 (s G1/alpha)^2) G = alpha^2/4 (sqrt(2) gA^2/pi mZ^2/(s - mZ^2) s G1/alpha + gA^2 gV^2/pi^2 (mZ^2/(s - mZ^2))^2 (s G1/alpha)^2) yhat = zero(N) for(k,1,N, yhat[k] = C 2 pi (F (1 + x[k]^2) + G x[k]) (hbar c)^2 ) yhat "Coefficient of determination (R squared)" ybar = sum(y) / N RSS = sum((y - yhat)^2) -- residual sum of squares TSS = sum((y - ybar)^2) -- total sum of squares 1 - RSS / TSS
Run