-- Verify formulas for muon pair production p = sqrt(E^2 - m^2) rho = sqrt(E^2 - M^2) p1 = (E, 0, 0, p) p2 = (E, 0, 0, -p) p3 = (E, rho sin(theta) cos(phi), rho sin(theta) sin(phi), rho cos(theta)) p4 = (E, -rho sin(theta) cos(phi), -rho sin(theta) sin(phi), -rho cos(theta)) u11 = (E + m, 0, p1[4], p1[2] + i p1[3]) / sqrt(E + m) u12 = (0, E + m, p1[2] - i p1[3], -p1[4]) / sqrt(E + m) v21 = (p2[4], p2[2] + i p2[3], E + m, 0) / sqrt(E + m) v22 = (p2[2] - i p2[3], -p2[4], 0, E + m) / sqrt(E + m) u31 = (E + M, 0, p3[4], p3[2] + i p3[3]) / sqrt(E + M) u32 = (0, E + M, p3[2] - i p3[3], -p3[4]) / sqrt(E + M) v41 = (p4[4], p4[2] + i p4[3], E + M, 0) / sqrt(E + M) v42 = (p4[2] - i p4[3], -p4[4], 0, E + M) / sqrt(E + M) I = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)) gmunu = ((1,0,0,0),(0,-1,0,0),(0,0,-1,0),(0,0,0,-1)) gamma0 = ((1,0,0,0),(0,1,0,0),(0,0,-1,0),(0,0,0,-1)) gamma1 = ((0,0,0,1),(0,0,1,0),(0,-1,0,0),(-1,0,0,0)) gamma2 = ((0,0,0,-i),(0,0,i,0),(0,i,0,0),(-i,0,0,0)) gamma3 = ((0,0,1,0),(0,0,0,-1),(-1,0,0,0),(0,1,0,0)) gamma = (gamma0,gamma1,gamma2,gamma3) gammaT = transpose(gamma) gammaL = transpose(dot(gmunu,gamma)) "Verify Casimir trick" u1 = (u11,u12) v2 = (v21,v22) u3 = (u31,u32) v4 = (v41,v42) v2bar = dot(conj(v2),gamma0) -- adjoint of v2 u3bar = dot(conj(u3),gamma0) -- adjoint of u3 M1(a,b,c,d) = dot(dot(u3bar[c],gammaL,v4[d]),dot(v2bar[b],gammaT,u1[a])) MM = sum(a,1,2,sum(b,1,2,sum(c,1,2,sum(d,1,2, M1(a,b,c,d) conj(M1(a,b,c,d)) )))) pslash1 = dot(p1,gmunu,gamma) pslash2 = dot(p2,gmunu,gamma) pslash3 = dot(p3,gmunu,gamma) pslash4 = dot(p4,gmunu,gamma) X1 = pslash1 + m I X2 = pslash2 - m I X3 = pslash3 + M I X4 = pslash4 - M I T1 = contract(dot(X3,gammaT,X4,gammaT),1,4) T2 = contract(dot(X2,gammaL,X1,gammaL),1,4) f = contract(dot(T1,transpose(T2))) check(f == MM) "ok" "Verify probability density" s = dot(p1 + p2, gmunu, p1 + p2) check(4 s^2 == 64 E^4) check(f / (64 E^4) == 1 + cos(theta)^2 + (m^2 + M^2) / E^2 sin(theta)^2 + m^2 M^2 cos(theta)^2 / E^4) -- verify integral f = 1 + cos(theta)^2 I = -1/3 cos(theta)^3 - cos(theta) check(f sin(theta) == d(I,theta)) -- verify cdf F = (I - eval(I,theta,0)) / (eval(I,theta,pi) - eval(I,theta,0)) check(F == -1/8 cos(theta)^3 - 3/8 cos(theta) + 1/2) "ok"
Run