
Mott problem

Consider the emission of an α particle in a cloud chamber. The quantum mechanical model
of an α particle is a spherical wave emanating from the origin. A spherical wave should
ionize atoms throughout the cloud chamber. However, only straight tracks are observed.
Nevill Mott showed that straight tracks are consistent with the Schrodinger equation.

Let R be the position of the α particle, let a1 and a2 be the positions of two atoms ionized
by the α particle, and let r1 and r2 be the positions of the free electrons. The Hamiltonian
for the system is

Ĥ = K̂α + K̂1 + K̂2 + U1 + U2 + V1 + V2

where

K̂α = − ℏ2

2M
∇2

α kinetic energy of α particle

K̂1 = − ℏ2

2m
∇2

1 kinetic energy of 1st electron

K̂2 = − ℏ2

2m
∇2

2 kinetic energy of 2nd electron

U1 = − e2

|r1 − a1|
potential energy of 1st electron

U2 = − e2

|r2 − a2|
potential energy of 2nd electron

V1 = − 2e2

|R− r1|
potential energy of α and 1st electron

V2 = − 2e2

|R− r2|
potential energy of α and 2nd electron

Let ψ1 and ψ2 be atomic wavefunctions such that(
K̂1 + U1

)
ψ1 = E1ψ1,

(
K̂2 + U2

)
ψ2 = E2ψ2

We want to find a wavefunction F (R, r1, r2) such that

ĤF = EF

Let
F = F0 + F1 + F2 + · · ·

and let
Ĥ0 = K̂α + E1 + E2

Start by finding an F0 such that
Ĥ0F0 = EF0

1



The solution is
F0(R, r1, r2) = f0(R)ψ1(r1 − a1)ψ2(r2 − a2) (1)

where

f0(R) =
1

|R|
exp

(
ik|R|
ℏ

)
, k =

√
2M(E − E1 − E2)

It follows that for the full Hamiltonian Ĥ we have

ĤF0 = EF0 + (V1 + V2)F0

To cancel (V1 + V2)F0 from the full Hamiltonian, find an F1 such that

Ĥ0F1 = EF1 − (V1 + V2)F0

Rewrite as (
Ĥ0 − E

)
F1 = −(V1 + V2)F0

Expand F1 and F0.(
Ĥ0 − E

)
f1(R)ψ1(r1 − a1)ψ2(r2 − a2) = −(V1 + V2)f0(R)ψ1(r1 − a1)ψ2(r2 − a2)

To solve for f1(R) multiply both sides by

ψ∗
1(r1 − a1)ψ

∗
2(r2 − a2)

and integrate over r1 and r2 to obtain(
Ĥ0 − E

)
f1(R) = V1(R)f0(R) + V2(R)f0(R) (2)

where

V1(R) = 2e2
∫

|ψ1(r)|2

|R− a1 − r|
dr, V2(R) = 2e2

∫
|ψ2(r)|2

|R− a2 − r|
dr

Per Mott the solution to (2) is

f1(R) =
M

2πℏ2

∫
V1(r)f0(r)

|R− r|
exp

(
ik|R− r|

ℏ

)
dr+

M

2πℏ2

∫
V2(r)f0(r)

|R− r|
exp

(
ik|R− r|

ℏ

)
dr

Let I1 be the first integral. Substitute for f0 in I1 to obtain

I1(R) =
M

2πℏ2

∫
V1(r)

|R− r||r|
exp

(
ik|R− r|

ℏ
+
ik|r|
ℏ

)
dr

Change of variable r → r+ a1

I1(R) =
M

2πℏ2

∫
V1(r+ a1)

|R− r− a1||r+ a1|
exp

(
ik|R− r− a1|

ℏ
+
ik|r+ a1|

ℏ

)
dr
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Per Mott (see also Figari and Teta)

I1(R) ≈ 1

|R− a1|
exp

(
ik|R− a1|

ℏ

)
× M

2πℏ2

∫
V1(r+ a1)

|r+ a1|
exp

(
−iku1(R) · r

ℏ
+
ik|r+ a1|

ℏ

)
dr

where

u1(R) =
R− a1

|R− a1|
The condition for stationary phase is

g′ =
d

dr
(−u1(R) · r+ |r+ a1|) = −u1(R) +

r+ a1

|r+ a1|
= 0

Note that V1(r + a1) is small except for r ≈ 0 so we only require stationarity at the origin.
Hence for r = 0 the integral is stationary (g′ = 0) when R satisfies the condition

u1(R) =
a1

|a1|

By symmetry of the integrals, I2 is stationary when R satisfies the condition

u2(R) =
a2

|a2|

Because nonstationary integrals vanish we have

f1(R) =



I1(R), u1(R) =
a1

|a1|
and u2(R) ̸= a2

|a2|
I2(R), u1(R) ̸= a1

|a1|
and u2(R) =

a2

|a2|
I1(R) + I2(R), u1(R) =

a1

|a1|
and u2(R) =

a2

|a2|
0, otherwise

The first two cases represent states in which just one atom is ionized. The third case has
both V1 and V2 contributing to f1. Hence when both atoms are ionized we have

f1(R) =

I1(R) + I2(R),
a1

|a1|
=

a2

|a2|
0, otherwise

To satisfy the condition, a1 and a2 must be on the same ray emanating from the origin.
Hence straight tracks are consistent with the Schrodinger equation.
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Note

The condition for stationarity

u1(R) =
R− a1

|R− a1|
=

a1

|a1|

is satisfied by all R and constant c > 1 such that

R = ca1

Condition c > 1 implies that |R| > |a1| so technically the condition

a1

|a1|
=

a2

|a2|

is less stringent than

u1(R) =
a1

|a1|
and u2(R) =

a2

|a2|
The exact condition for stationarity of both I1 and I2 is

a1

|a1|
=

a2

|a2|
and |R| > max(|a1|, |a2|)
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