Mott problem

Consider the emission of an a particle in a cloud chamber. The quantum mechanical model
of an « particle is a spherical wave emanating from the origin. A spherical wave should
ionize atoms throughout the cloud chamber. However, only straight tracks are observed.
Nevill Mott showed that straight tracks are consistent with the Schrodinger equation.

Let R be the position of the a particle, let a; and as be the positions of two atoms ionized
by the a particle, and let r; and ry be the positions of the free electrons. The Hamiltonian
for the system is
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H=K,+ K +K,+U +Uy+ Vi +V;
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Vo = —ﬁ potential energy of o and 2nd electron

Let ¢, and 95 be atomic wavefunctions such that
(-fﬁ + U1> U1 = Eqyy, (KZ + U2> Uy = Eythy
We want to find a wavefunction F'(R,rq,rs) such that
HF = EF

Let
F:F0+F1+F2+

and let ) A
Hy=K,+ FE, + E,

Start by finding an F{, such that A
HyFy = EF



The solution is
Fo(R 11, 12) = fo(R)Y1(r1 — a1)tha(rz — az) (1)

where

fo(R) = ﬁ exp (ﬂ;") . k=+2M(E - E, — E,)
It follows that for the full Hamiltonian H we have
HF, = EFy + (Vi + Vo) Fy
To cancel (V] + V5)Fy from the full Hamiltonian, find an F} such that
HyF, = EF; — (Vi + Vo) Fy

Rewrite as )
(o~ ) P = (Vi + Va)Fy

Expand F; and Fjp.
(Ho— E) iR (rs — an)ta(rs = a) = (Vi + Vo) fo( R} (s — a)oha(rs — )
To solve for fi(R) multiply both sides by
Vi (rr —ap)y5(ry — ag)

and integrate over ry and ry to obtain

(o — B) [i(R) = Vi(R) fo(R) + Va(R) fo(R) (2)
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Per Mott the solution to (2) is

M [ Vi(r) fo(r) ik|R —r| M [ Vy(r) fo(r) ik|R —r|
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o2 ) R—x| P n dr+ 5 0 Rz P n r

where

fi(R)

Let I; be the first integral. Substitute for f, in I; to obtain

/ kIR x| ikl
~ k2 R r||r| h h

Change of variable r — r 4 a;
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Per Mott (see also Figari and Teta)

1 kIR —a
L(R) ~ mexp (|Tl‘>

M Vi(r + ap) exp (_ikul(R) r ik|r + a1|) dr
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where R a,
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The condition for stationary phase is
, d r+a;
9= Cwu®) r+frtalf)=-u(R)+ e 0

Note that Vi (r + a;) is small except for r ~ 0 so we only require stationarity at the origin.
Hence for r = 0 the integral is stationary (¢’ = 0) when R satisfies the condition

aj

u; (R) = m

By symmetry of the integrals, I is stationary when R satisfies the condition

a
Because nonstationary integrals vanish we have

( a a
L(R), u(R) = |a1| and uy(R) |a_z|

ai ay
I(R), u;(R) # ] 2 u(R) o

f I(R) = al a2
L(R)+ L(R), w(R)= @ and uy(R) = |a_z‘|
0, otherwise

The first two cases represent states in which just one atom is ionized. The third case has
both V; and V5 contributing to f;. Hence when both atoms are ionized we have

L(R)+ L(R), =2
f[(R) = lai]  |ag|
0, otherwise

To satisfy the condition, a; and a; must be on the same ray emanating from the origin.
Hence straight tracks are consistent with the Schrodinger equation.



Note
The condition for stationarity

R —a; a

R: —
B = R " T

is satisfied by all R and constant ¢ > 1 such that
R = cay

Condition ¢ > 1 implies that |R| > |a;| so technically the condition

ap . as
i ay
is less stringent than
=N a2
R) = d R) =
u; (R) ] and uy(R) 2]

The exact condition for stationarity of both I; and I, is

A IR| > max(|a|, [as])
ai]  [ay|



