
Laplacian of product

Let

F (r) =
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where r = |r|. Show that
∇2F (r) = −k2F (r)− 4πδ3(r)

Recall ∇2 = ∇ · ∇ and
∇ · (fA) = ∇f ·A+ f∇·A
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In spherical coordinates
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Substitute into (1) to obtain

∇2F (r) = −k2eikr

r
+ eikr∇21

r
= −k2F (r)− 4πδ3(r)eikr

Noting that eikr = 1 for r = 0 we have

∇2F (r) = −k2F (r)− 4πδ3(r) (4)
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