Klein-Nishina formula

The Klein-Nishina formula is the differential cross section for photon-electron scattering.

It is easy to derive the Klein-Nishina formula from Dirac’s equation by starting out in the
center-of-mass frame and then boosting to the lab frame. In the center-of-mass frame we
have the following momentum vectors where F = v/w? + m?2.
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The scattering probability amplitude M, for spin state ab is

Mo = Mgy + Moy

where
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Symbol e is elementary charge and
4, = (p1 + p2)*gap”
d, = (ps — 1) gap?”
s = (p1+ p2)?
u=(p1— p4)2

The expected probability density (|M]?) is the average of spin states.
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To understand how M, M7, is calculated, write M, in component form.
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Metric tensor g, is required to sum over indices p and v.

MMy, = (Mlab>w( Tab);w = (Mlab)wgua(MTab)aﬁgﬁv
Similarly for Mo M3,,. For My, the index order is v followed by o hence

MMy, = (Mlab)W(M;ab)w = (Mlab)wguﬁ (M;ab)ﬁagau

The Casimir trick uses matrix arithmetic to sum over spin states.
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where
fir =T ((p, + m)y(d, +m)" (B, + m)vld, +m)
fiz = T (p, + M)y (dy + M)y (py + M)l + M),

foo = Tr (B, + )" (d, + )7 (B, = M) (g, + m)
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The trace operator Tr is the sum of diagonal matrix elements.
The following formulas are equivalent to the Casimir trick. (Recall that a - b = a*g,,b".)

fi1 = 32(p1 - p2)(p1 - pa) + 64m>(py - p2) — 32m>(py - p3) — 32m>(py - pa) + 32m*
fi2 = 16m>(py - p2) — 16m*(py - pa) + 32m* (2)
fa2 = 32(p1 - p2)(p1 - pa) + 32m*(p1 - p2) — 32m°(py - ps) — 64m>(py - pa) + 32m*
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In Mandelstam variables
fi1 = —8su + 24sm? + 8um? + 8m?
fi2 = 8sm?* + 8um? + 16m* (3)
foo = —8su + 8sm? + 24um? + 8m*

Scattering experiments are typically done in the lab frame. Define Lorentz boost A for
transforming momentum vectors to the lab frame.
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Mandelstam variables are invariant under a boost.
s = (m +p2)2 = (Ap1 + Ap2)2
t = (p1 —p3)* = (Ap1 — Aps)® (4)
U= (p1 - p4)2 = (Apl - Ap4)2

In the lab frame, let w;, be the angular frequency of the incident photon and let w} be the
angular frequency of the scattered photon.
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It can be shown that

Then by (1), (3), and (5) we have



Lab scattering angle 0, is given by the Compton equation
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Now that we have derived (|M|?) we can investigate the angular distribution of scattered
photons. For simplicity let us drop the L subscript from lab variables. From now on the
symbols w, w’, and 6 will be lab frame variables.

The differential cross section is
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where
s =m? + 2mw = (mc?)? + 2(mc?) (hw)
and w’ is given by the Compton equation
, w
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For the lab frame we have
/
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w w
Hence in the lab frame
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which is the Klein-Nishina formula.

Substituting

we have




