
Klein-Nishina formula

The Klein-Nishina formula is the differential cross section for photon-electron scattering.
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It is easy to derive the Klein-Nishina formula from Dirac’s equation by starting out in the
center-of-mass frame and then boosting to the lab frame. In the center-of-mass frame we
have the following momentum vectors where E =

√
ω2 +m2.

p1 =


ω
0
0
ω


inbound
photon

p2 =


E
0
0
−ω


inbound
electron

p3 =


ω

ω sin θ cosϕ
ω sin θ sinϕ

ω cos θ


outbound
photon

p4 =


E

−ω sin θ cosϕ
−ω sin θ sinϕ

−ω cos θ


outbound
electron

Spinors for the inbound electron.

u21 =
1√

E +m


E +m

0
−ω
0


inbound electron

spin up

u22 =
1√

E +m


0

E +m
0
ω


inbound electron

spin down

Spinors for the outbound electron.

u41 =
1√

E +m


E +m

0
p4z

p4x + ip4y


outbound electron

spin up

u42 =
1√

E +m


0

E +m
p4x − ip4y

−p4z


outbound electron

spin down

The scattering probability amplitude Mab for spin state ab is

Mba = M1ab +M2ab

where

M1ab =
ū4b(−ieγµ)(/q1 +m)(−ieγν)u2a

s−m2
, M2ab =

ū4b(−ieγν)(/q2 +m)(−ieγµ)u2a

u−m2
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Symbol e is elementary charge and

/q1 = (p1 + p2)
αgαβγ

β

/q2 = (p4 − p1)
αgαβγ

β

s = (p1 + p2)
2

u = (p1 − p4)
2

The expected probability density ⟨|M|2⟩ is the average of spin states.

⟨|M|2⟩ = 1

4

2∑
a=1

2∑
b=1

|Mab|2

Hence

⟨|M|2⟩ = 1

4

2∑
a=1

2∑
b=1

(M1abM∗
1ab +M1abM∗

2ab +M2abM∗
1ab +M2abM∗

2ab)

To understand how M1abM∗
1ab is calculated, write M1ab in component form.

(M1ab)
µν =

(ū4b)α(−ieγµα
β)(/q1 +m)βρ(−ieγνρ

σ)(u2a)
σ

s−m2

Metric tensor gµν is required to sum over indices µ and ν.

M1abM∗
1ab = (M1ab)

µν(M∗
1ab)µν = (M1ab)

µνgµα(M∗
1ab)

αβgβν

Similarly for M2abM∗
2ab. For M2ab the index order is ν followed by µ hence

M1abM∗
2ab = (M1ab)

µν(M∗
2ab)νµ = (M1ab)

µνgνβ(M∗
2ab)

βαgαµ

The Casimir trick uses matrix arithmetic to sum over spin states.

⟨|M|2⟩ = e4

4

(
f11

(s−m2)2
+

2f12
(s−m2)(u−m2)

+
f22

(u−m2)2

)
(1)

where

f11 = Tr
(
(/p2 +m)γµ(/q1 +m)γν(/p4 +m)γν(/q1 +m)γµ

)
f12 = Tr

(
(/p2 +m)γµ(/q2 +m)γν(/p4 +m)γµ(/q1 +m)γν

)
f22 = Tr

(
(/p2 +m)γµ(/q2 +m)γν(/p4 +m)γν(/q2 +m)γµ

)
The trace operator Tr is the sum of diagonal matrix elements.

The following formulas are equivalent to the Casimir trick. (Recall that a · b = aµgµνb
ν .)

f11 = 32(p1 · p2)(p1 · p4) + 64m2(p1 · p2)− 32m2(p1 · p3)− 32m2(p1 · p4) + 32m4

f12 = 16m2(p1 · p2)− 16m2(p1 · p4) + 32m4

f22 = 32(p1 · p2)(p1 · p4) + 32m2(p1 · p2)− 32m2(p1 · p3)− 64m2(p1 · p4) + 32m4

(2)
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In Mandelstam variables

f11 = −8su+ 24sm2 + 8um2 + 8m4

f12 = 8sm2 + 8um2 + 16m4

f22 = −8su+ 8sm2 + 24um2 + 8m4

(3)

Scattering experiments are typically done in the lab frame. Define Lorentz boost Λ for
transforming momentum vectors to the lab frame.

Λ =


E/m 0 0 ω/m
0 1 0 0
0 0 1 0

ω/m 0 0 E/m


The electron is at rest in the lab frame.

Λp2 =


m
0
0
0


Mandelstam variables are invariant under a boost.

s = (p1 + p2)
2 = (Λp1 + Λp2)

2

t = (p1 − p3)
2 = (Λp1 − Λp3)

2

u = (p1 − p4)
2 = (Λp1 − Λp4)

2

(4)

In the lab frame, let ωL be the angular frequency of the incident photon and let ω′
L be the

angular frequency of the scattered photon.

ωL = Λp1 ·


1
0
0
0

 =
ω2

m
+

ωE

m

ω′
L = Λp3 ·


1
0
0
0

 =
ω2 cos θ

m
+

ωE

m

It can be shown that
s = m2 + 2mωL

t = 2m(ω′
L − ωL)

u = m2 − 2mω′
L

(5)

Then by (1), (3), and (5) we have

⟨|M|2⟩ = 2e4

(
ωL

ω′
L

+
ω′
L

ωL

+

(
m

ωL

− m

ω′
L

+ 1

)2

− 1

)
(6)

3



Lab scattering angle θL is given by the Compton equation

cos θL =
m

ωL

− m

ω′
L

+ 1

Hence

⟨|M|2⟩ = 2e4
(
ωL

ω′
L

+
ω′
L

ωL

+ cos2 θL − 1

)
= 2e4

(
ωL

ω′
L

+
ω′
L

ωL

− sin2 θL

)
Now that we have derived ⟨|M|2⟩ we can investigate the angular distribution of scattered
photons. For simplicity let us drop the L subscript from lab variables. From now on the
symbols ω, ω′, and θ will be lab frame variables.

The differential cross section is

dσ

dΩ
=

1

4(4πε0)2s

(
ω′

ω

)2

⟨|M|2⟩

where
s = m2 + 2mω = (mc2)2 + 2(mc2)(ℏω)

and ω′ is given by the Compton equation

ω′ =
ω

1 + ℏω
mc2

(1− cos θ)

For the lab frame we have

⟨|M|2⟩ = 2e4
(
ω

ω′ +
ω′

ω
− sin2 θ

)
Hence in the lab frame

dσ

dΩ
=

e4

2(4πε0)2s

(
ω′

ω

)2(
ω

ω′ +
ω′

ω
− sin2 θ

)
Substituting

e2 = 4πε0αℏc

we have
dσ

dΩ
=

α2(ℏc)2

2s

(
ω′

ω

)2(
ω

ω′ +
ω′

ω
− sin2 θ

)
which is the Klein-Nishina formula.
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