"Verify hydrogen eigenfunctions" psi(n,l,m) = R(n,l) Y(l,m) R(n,l) = 2 / n^2 * a0^(-3/2) * sqrt((n - l - 1)! / (n + l)!) * (2 r / (n a0))^l * L(2 r / (n a0), n - l - 1, 2 l + 1) * exp(-r / (n a0)) a0 = 4 pi epsilon0 hbar^2 / (e^2 mu) -- Bohr radius -- associated Laguerre polynomial (k is a local var) L(x,n,m,k) = (n + m)! sum(k, 0, n, (-x)^k / ((n - k)! (m + k)! k!)) -- spherical harmonic Y(l,m) = (-1)^m sqrt((2 l + 1) / (4 pi) (l - m)! / (l + m)!) * P(l,m) exp(i m phi) -- associated Legendre of cos theta (arxiv.org/abs/1805.12125) P(l,m,k) = test(m < 0, (-1)^m (l + m)! / (l - m)! P(l,-m), (sin(theta)/2)^m sum(k, 0, l - m, (-1)^k (l + m + k)! / (l - m - k)! / (m + k)! / k! * ((1 - cos(theta)) / 2)^k)) -- Hamiltonian H(f) = -hbar^2 D(f) / (2 mu) - e^2 / (4 pi epsilon0 r) f -- Laplacian D(f) = 1/r^2 d(r^2 d(f,r), r) + 1/(r^2 sin(theta)) d(sin(theta) d(f,theta), theta) + 1/(r sin(theta))^2 d(f,phi,2) -- E(n) returns the nth energy eigenvalue E(n) = -mu / (2 n^2) (e^2 / (4 pi epsilon0 hbar))^2 for(n, 1, 3, for(l, 0, n - 1, for(m, -l, l, f = psi(n,l,m), check(H(f) == E(n) f) ))) "ok"
Run