Hydrogen eigenfunction

The hydrogen atom eigenfunction $\psi_{n l m}(r, \theta, \phi)$ is the product of a radial eigenfunction $R_{n l}(r)$ and a spherical harmonic eigenfunction $Y_{l m}(\theta, \phi)$.

$$
\psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l m}(\theta, \phi)
$$

Quantum number n is the principal quantum number.

$$
n=1,2,3, \ldots
$$

Quantum number l is the angular momentum quantum number.

$$
l=0,1, \ldots, n-1
$$

Quantum number m is the magnetic quantum number.

$$
m=-l, \ldots, 0, \ldots, l
$$

The normalized radial eigenfunction $R_{n l}(r)$ is computed from the following formula.

$$
R_{n l}(r)=\frac{2}{n^{2}}\left(\frac{(n-l-1)!}{(n+l)!}\right)^{1 / 2}\left(\frac{2 r}{n a_{0}}\right)^{l} L_{n-l-1}^{2 l+1}\left(\frac{2 r}{n a_{0}}\right) \exp \left(-\frac{r}{n a_{0}}\right) a_{0}^{-3 / 2}
$$

Symbol a_{0} is the Bohr radius.

$$
a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{e^{2} \mu} \approx 0.529 \times 10^{-10} \text { meter }
$$

Symbol μ is the reduced mass of the electron.

$$
\mu=\frac{m_{e} m_{p}}{m_{e}+m_{p}}
$$

Symbol L is a Laguerre polynomial computed from the following formula.

$$
L_{n}^{m}(x)=(n+m)!\sum_{k=0}^{n} \frac{(-x)^{k}}{(n-k)!(m+k)!k!}
$$

The normalized spherical harmonic eigenfunction $Y_{l m}(\theta, \phi)$ is computed from the following formula.

$$
Y_{l m}(\theta, \phi)=(-1)^{m}\left(\frac{2 l+1}{4 \pi}\right)^{1 / 2}\left(\frac{(l-m)!}{(l+m)!}\right)^{1 / 2} P_{l}^{m}(\cos \theta) \exp (i m \phi)
$$

Symbol P is a Legendre polynomial which can be computed using Rodrigues's formula.

$$
P_{n}^{m}(x)=\frac{1}{2^{n} n!}\left(1-x^{2}\right)^{m / 2} \frac{d^{n+m}}{d x^{n+m}}\left(x^{2}-1\right)^{n}
$$

The eigenfunction $\psi_{n} \equiv \psi_{n l m}(r, \theta, \phi)$ solves Schrodinger's equation.

$$
\hat{H} \psi_{n}=E_{n} \psi_{n}
$$

Symbol \hat{H} is the Hamiltonian operator for the hydrogen atom.

$$
\hat{H} \psi_{n}=-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \psi_{n}-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \psi_{n}
$$

Symbol ∇^{2} is the Laplacian operator in spherical coordinates.

$$
\nabla^{2} \psi_{n}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r} \psi_{n}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \psi_{n}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \psi_{n}
$$

Symbol E_{n} is the energy eigenvalue.

$$
E_{n}=-\frac{\mu}{2 n^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar}\right)^{2} \approx-\frac{1}{n^{2}} \times 13.6 \mathrm{eV}
$$

