Hydrogen alpha line

The following transitions correspond to the $\mathrm{H}-\alpha$ line of the hydrogen spectrum. See "Atomic Transition Probabilities Volume I," issued May 20, 1966, page 2.
$\left.\begin{array}{|c|c|c|}\hline \text { Transition } & \lambda(\AA) & A_{k i}(\text { second } \\ \\ \hline 1\end{array}\right)$
$A_{k i}$ is the spontaneous emission rate where i is the lower state and k is the upper state. Orbital names correspond to the following azimuthal quantum numbers ℓ.

Orbital	ℓ
s	0
p	1
d	2

Each transition in the table has multiple processes due to the magnetic quantum number m_{ℓ}. (Recall that $\left.m_{\ell}=0, \pm 1, \ldots, \pm \ell.\right)$

There are three ways to transition from $3 s$ to $2 p$.

$$
\begin{aligned}
& \psi_{3,0,0} \rightarrow \psi_{2,1,1} \\
& \psi_{3,0,0} \rightarrow \psi_{2,1,0} \\
& \psi_{3,0,0} \rightarrow \psi_{2,1,-1}
\end{aligned}
$$

There are three ways to transition from $3 p$ to $2 s$.

$$
\begin{aligned}
\psi_{3,1,1} & \rightarrow \psi_{2,0,0} \\
\psi_{3,1,0} & \rightarrow \psi_{2,0,0} \\
\psi_{3,1,-1} & \rightarrow \psi_{2,0,0}
\end{aligned}
$$

Finally, there are fifteen ways to transition from $3 d$ to $2 p$. (Some of these transitions have zero amplitude.)

$$
\begin{array}{rrr}
\psi_{3,2,2} \rightarrow \psi_{2,1,1} & \psi_{3,2,2} \rightarrow \psi_{2,1,0} & \psi_{3,2,2} \rightarrow \psi_{2,1,-1} \\
\psi_{3,2,1} \rightarrow \psi_{2,1,1} & \psi_{3,2,1} \rightarrow \psi_{2,1,0} & \psi_{3,2,1} \rightarrow \psi_{2,1,-1} \\
\psi_{3,2,0} \rightarrow \psi_{2,1,1} & \psi_{3,2,0} \rightarrow \psi_{2,1,0} & \psi_{3,2,0} \rightarrow \psi_{2,1,-1} \\
\psi_{3,2,-1} \rightarrow \psi_{2,1,1} & \psi_{3,2,-1} \rightarrow \psi_{2,1,0} & \psi_{3,2,-1} \rightarrow \psi_{2,1,-1} \\
\psi_{3,2,-2} \rightarrow \psi_{2,1,1} & \psi_{3,2,-2} \rightarrow \psi_{2,1,0} & \psi_{3,2,-2} \rightarrow \psi_{2,1,-1}
\end{array}
$$

For each $\mathrm{H}-\alpha$ line, an average $A_{k i}$ is computed by summing over $A_{k i}$ for individual processes and dividing by the number of distinct initial states. For example, $3 d \rightarrow 2 p$ has five distinct initial states, so the divisor is five.
$A_{k i}$ is computed from the following formula.

$$
A_{k i}=\frac{e^{2}}{3 \pi \varepsilon_{0} \hbar c^{3}} \omega_{k i}^{3}\left|r_{k i}\right|^{2}
$$

The transition frequency $\omega_{k i}$ is given by Bohr's frequency condition.

$$
\omega_{k i}=\frac{1}{\hbar}\left(E_{k}-E_{i}\right)
$$

The transition probability (multiplied by a physical constant) is

$$
\left|r_{k i}\right|^{2}=\left|x_{k i}\right|^{2}+\left|y_{k i}\right|^{2}+\left|z_{k i}\right|^{2}
$$

These are the transition amplitudes.

$$
\begin{aligned}
& x_{k i}=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} \psi_{i}^{*} r \sin \theta \cos \phi \psi_{k} r^{2} \sin \theta d r d \theta d \phi \\
& y_{k i}=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} \psi_{i}^{*} r \sin \theta \sin \phi \psi_{k} r^{2} \sin \theta d r d \theta d \phi \\
& z_{k i}=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} \psi_{i}^{*} r \cos \theta \psi_{k} r^{2} \sin \theta d r d \theta d \phi
\end{aligned}
$$

Using Eigenmath we obtain the following values for average $A_{k i}$. The results are essentially identical to the values found in "Atomic Transition Probabilities."

$$
\begin{aligned}
& A_{3 s 2 p}=6.31358 \times 10^{6} \text { second }^{-1} \\
& A_{3 p 2 s}=2.24483 \times 10^{7} \text { second }^{-1} \\
& A_{3 d 2 p}=6.4651 \times 10^{7} \text { second }^{-1}
\end{aligned}
$$

