
How Planck calculated h and k

Max Planck used two experimental results to calculate h and k in his 1901 paper “On the
Law of Distribution of Energy in the Normal Spectrum.” Although the quantum of action
h is well known as Planck’s constant, the use of k for Boltzmann’s constant is also due to
Planck. In addition, Planck was the first to compute a numerical value for k.

One of the experimental results Planck used was the difference S100 − S0 determined by
Ferdinand Kurlbaum in 1898 where St is the power radiated by a black body at t degrees
Celsius.

S100 − S0 = 7.31× 105 erg cm−2 s−1

From the radiant power formula St = (t+ 273)4σ we have

S100 − S0 = (100 + 273)4σ − (0 + 273)4σ = (3734 − 2734)σ

Hence the Stefan-Boltzmann constant σ can be determined from S100 − S0.

σ =
S100 − S0

3734 − 2734

The Stefan-Boltzmann law is the relation between energy density and temperature θ.

“energy per unit volume” =
4σθ4

c

The use of θ for temperature looks strange but that is what scientists used at the time.

Using the Stefan-Boltzmann law and Kurlbaum’s measurement, Planck calculated energy
density for temperature θ = 1.

4

c
× S100 − S0

3734 − 2734
=

4

3× 1010
× 7.31× 105

3734 − 2734
= 7.061× 10−15 erg cm−3

Planck’s 1901 paper has the following formula (Equation 12) for energy distribution u as a
function of frequency ν and temperature θ.

u =
8πhν3

c3
1

ehν/kθ − 1

The integral of u over all frequencies yields the total energy density u∗.

u∗ =

∫ ∞

0

u dν =
8πh

c3

∫ ∞

0

ν3

ehν/kθ − 1
dν

Planck used a series expansion to solve the integral for θ = 1. However, we will use the
following identity. ∫ ∞

0

x3

ex − 1
dx =

π4

15
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By the change of variable x = hν/k we have

u∗ =
8πh

c3

(
k

h

)4
π4

15

Planck then set u∗ equal to the result from the Stefan-Bolztmann law.

8πh

c3

(
k

h

)4
π4

15
= 7.061× 10−15

Hence
k4

h3
= 7.061× 10−15 × 15c3

8π5
= 1.1682× 1015

The second experimental result Planck used was λmθ = 0.294 obtained in 1900 by Otto
Lummer and Ernst Pringsheim. Symbol λm is the wavelength in centimeters of peak radiant
energy for a black body at temperature θ in Kelvin.

Planck’s 1901 paper has the following formula (Equation 13) for energy distribution E as a
function of wavelength λ and temperature θ.

E =
8πch

λ5

1

ech/kλθ − 1

Planck solves dE/dλ = 0 to obtain λm which we will now do step by step. First, compute
dE/dλ.

dE

dλ
=

8πc2h2

kλ7θ

ech/kλθ

(ech/kλθ − 1)2
− 40πch

λ6

1

ech/kλθ − 1

Set dE/dλ = 0 to obtain

8πc2h2

kλ7θ

ech/kλθ

(ech/kλθ − 1)2
=

40πch

λ6

1

ech/kλθ − 1

Then by cancellation of terms
ch

5kλθ

ech/kλθ

ech/kλθ − 1
= 1

Multiply both sides by ech/kλθ − 1.

ch

5kλθ
ech/kλθ = ech/kλθ − 1

Subtract ech/kλθ from both sides.(
ch

5kλθ
− 1

)
ech/kλθ = −1

Multiply both sides by −1 to obtain Planck’s result.(
1− ch

5kλθ

)
ech/kλθ = 1
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Planck then provides the following numerical solution.

ch

kλθ
= 4.9651

Then using c = 3× 1010 and λθ = 0.294 Planck calculates

h

k
= 4.9651× λθ

c
= 4.9651× 0.294

3× 1010
= 4.866× 10−11

Planck then solves for k. Plug h/k = 4.866× 10−11 into the formula for k4/h3 to obtain

k = 1.1682× 1015 × h3

k3
= 1.1682× 1015 × (4.866× 10−11)3 = 1.346× 10−16 ergK−1

Then calculate h directly from k.

h = k × 4.866× 10−11 = 6.55× 10−27 erg s
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