-- Verify Dirac's equation (32) -- See "Quantum Mechanics and a Preliminary Investigation of the Hydrogen Atom" psi(n,m) = 1 / sqrt(pi a0 (n + 1/2)) * sqrt((n - abs(m))! / (n + abs(m))!) * (2 r / a0 / (n + 1/2))^abs(m) * L(2 r / a0 / (n + 1/2), n - abs(m), 2 abs(m)) * exp(-r / a0 / (n + 1/2)) * exp(i m phi) a0 = hbar^2 / (k mu) -- Laguerre polynomial L(x,n,m,j) = (n + m)! sum(j,0,n,(-x)^j / ((n - j)! (m + j)! j!)) -- energy eigenvalues E(n) = -1/2 k^2 mu / hbar^2 / (n + 1/2)^2 -- integrator I(f) = do( f = defint(f, phi, 0, 2 pi), f = integral(f,r), 0 - eval(f,r,0) ) N = 5 -- arbitrary cutoff for demo R = zero(N,N) Enm = zero(N,N) for(n,1,N, for(m,1,N, R[n,m] = I(conj(psi(n,0)) r psi(m,0)))) for(n,1,N, Enm[n,n] = E(n)) -- solve for P P = sqrt(-2 mu / hbar^2 (Enm + k inv(R))) print(R,P) "Verify Dirac's equation (32)" Pn = P + n hbar unit(5,5) H(P) = -hbar^2 / (2 mu) inv(dot(P,P)) check(H(Pn) - H(P) == hbar^2 / (2 mu) (inv(dot(P,P)) - inv(dot(Pn,Pn)))) "ok" "Verify Schroedinger equation" check(-hbar^2 / (2 mu) dot(P,P) - k inv(R) == Enm) "ok"
Run