
Dirac equation

This is Dirac’s equation.
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Gamma matrices for the “Dirac representation” are

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


Let ϕ be the field

ϕ = pxx+ pyy + pzz − Et
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The four positive wave solutions to the Dirac equation are
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The four negative wave solutions are
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Negative wave solutions flip the sign of the mc term.

The following solutions are used for fermion fields.

ψ1 fermion, spin up
ψ2 fermion, spin down

ψ7 anti-fermion, spin up
ψ8 anti-fermion, spin down

Here is a check of physical units. The momenta px, py, and pz have units of

kilogrammeter

second

Hence

pxx ∝ kilogrammeter2

second

For the time-dependent term

Et ∝ kilogrammeter2

second2 × second =
kilogrammeter2

second

We have for the reduced Planck constant

ℏ ∝ kilogrammeter2

second

Hence ϕ/ℏ is dimensionless as required by the exponential function.
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kilogrammeter2
= 1

The derivatives introduce inverse units.
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The resulting units match the right-hand side of the Dirac equation.

mc ∝ kilogrammeter

second
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