Dirac equation

This is Dirac's equation.

$$
i \hbar\left(\frac{\gamma^{0}}{c} \frac{\partial}{\partial t}+\gamma^{1} \frac{\partial}{\partial x}+\gamma^{2} \frac{\partial}{\partial y}+\gamma^{3} \frac{\partial}{\partial z}\right) \psi=m c \psi
$$

Gamma matrices for the "Dirac representation" are

$$
\begin{aligned}
\gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) & \gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \\
\gamma^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) & \gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Let ϕ be the field

$$
\phi=p_{x} x+p_{y} y+p_{z} z-E t
$$

where

$$
E=\sqrt{p_{x}^{2} c^{2}+p_{y}^{2} c^{2}+p_{z}^{2} c^{2}+m^{2} c^{4}}
$$

The four positive wave solutions to the Dirac equation are

$$
\begin{array}{ll}
\psi_{1}=\left(\begin{array}{c}
E / c+m c \\
0 \\
p_{z} \\
p_{x}+i p_{y}
\end{array}\right) \exp \left(\frac{i \phi}{\hbar}\right) & \psi_{2}=\left(\begin{array}{c}
0 \\
E / c+m c \\
p_{x}-i p_{y} \\
-p_{z}
\end{array}\right) \exp \left(\frac{i \phi}{\hbar}\right) \\
\psi_{3}=\left(\begin{array}{c}
p_{z} \\
p_{x}+i p_{y} \\
E / c-m c \\
0
\end{array}\right) \exp \left(\frac{i \phi}{\hbar}\right) & \psi_{4}=\left(\begin{array}{c}
p_{x}-i p_{y} \\
-p_{z} \\
0 \\
E / c-m c
\end{array}\right) \exp \left(\frac{i \phi}{\hbar}\right)
\end{array}
$$

The four negative wave solutions are

$$
\begin{aligned}
\psi_{5} & =\left(\begin{array}{c}
E / c-m c \\
0 \\
p_{z} \\
p_{x}+i p_{y}
\end{array}\right) \exp \left(-\frac{i \phi}{\hbar}\right)
\end{aligned} \psi_{6}=\left(\begin{array}{c}
0 \\
E / c-m c \\
p_{x}-i p_{y} \\
-p_{z}
\end{array}\right) \exp \left(-\frac{i \phi}{\hbar}\right)
$$

Negative wave solutions flip the sign of the $m c$ term.
The following solutions are used for fermion fields.

$$
\begin{array}{ll}
\psi_{1} & \text { fermion, spin up } \\
\psi_{2} & \text { fermion, spin down } \\
& \\
\psi_{7} & \text { anti-fermion, spin up } \\
\psi_{8} & \text { anti-fermion, spin down }
\end{array}
$$

Here is a check of physical units. The momenta p_{x}, p_{y}, and p_{z} have units of

$$
\frac{\text { kilogram meter }}{\text { second }}
$$

Hence

$$
p_{x} x \propto \frac{\text { kilogram meter }{ }^{2}}{\text { second }}
$$

For the time-dependent term

$$
E t \propto \frac{\text { kilogram meter }^{2}}{\text { second }^{2}} \times \text { second }=\frac{\text { kilogram meter }}{}{ }^{2}
$$

We have for the reduced Planck constant

$$
\hbar \propto \frac{\text { kilogram meter }{ }^{2}}{\text { second }}
$$

Hence ϕ / \hbar is dimensionless as required by the exponential function.

$$
\frac{p_{x} x-E t}{\hbar} \propto \frac{{\text { kilogram } \text { meter }^{2}}_{\text {second }}^{\text {silogram meter }} \text { 2 }}{\text { second }}=1
$$

The derivatives introduce inverse units.

$$
\frac{\partial \psi}{\partial t} \propto \frac{1}{\text { second }} \quad \frac{\partial \psi}{\partial x} \propto \frac{1}{\text { meter }}
$$

Hence

$$
\frac{\hbar}{c} \frac{\partial \psi}{\partial t} \propto \frac{\text { kilogram meter }}{\text { second }}
$$

and

$$
\hbar \frac{\partial \psi}{\partial x} \propto \frac{\text { kilogram meter }}{\text { second }}
$$

The resulting units match the right-hand side of the Dirac equation.

$$
m c \propto \frac{\text { kilogram meter }}{\text { second }}
$$

