
Dirac equation 3

From the previous section we have wavefunctions
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wavefunction for antifermion spin up
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where
ξ = pµx

µ = Et− pxx− pyy − pzz

and
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Spinors u and v are equivalent to ψ with the exponentials canceled out.
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Spinors are solutions to the momentum-space Dirac equations

/pu = mcu

/pv = −mcv

where
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Spinors have the following “completeness property.”

u1ū1 + u2ū2 = /pc+mc2

v1v̄1 + v2v̄2 = /pc−mc2

Adjoints of spinors are formed as

ū = u†γ0, v̄ = v†γ0

Vector products uu† and vv† are outer products that form 4× 4 matrices.
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https://georgeweigt.github.io/examples/dirac-equation-3-demo.html

