
Dirac equation 2
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wavefunction for antifermion spin down

where
ξ = pµx

µ = Et− pxx− pyy − pzz

and
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Verify that ψ1 et cetera are solutions to the Dirac equation
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ψ = mcψ

and that the solutions are normalized as

|ψ|2 = 2E

Gamma matrices for the “Dirac representation” are

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


Let us check physical dimensions.

For the Et term in ξ we have

Et ∝ kilogrammeter2

second2 × second =
kilogrammeter2

second
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The momenta px, py, and pz have units of

kilogrammeter

second

Hence

−pxx− pyy − pzz ∝
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×meter =

kilogrammeter2
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We have for the reduced Planck constant

ℏ ∝ kilogrammeter2
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Hence ξ/ℏ is dimensionless as required by the exponential function:

Et− pxx− pyy − pzz
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From the normalization property we have

ψ ∝ joule1/2

The derivatives introduce inverse units.

For the time derivative
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For the spatial derivatives
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Hence
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and
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∂x
∝ kilogrammeter
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The resulting units match the right-hand side of the Dirac equation.

mcψ ∝ kilogrammeter

second
× joule1/2
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