Dirac equation 2
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Verify that i, et cetera are solutions to the Dirac equation
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and that the solutions are normalized as
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Gamma matrices for the “Dirac representation” are
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Let us check physical dimensions.
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The momenta p,, py, and p, have units of
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We have for the reduced Planck constant
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Hence £ /R is dimensionless as required by the exponential function:
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From the normalization property we have
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The derivatives introduce inverse units.
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The resulting units match the right-hand side of the Dirac equation.
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