"Dirac equation 1" P = (E / c, px, py, pz) X = (c t, x, y, z) gmunu = ((1,0,0,0),(0,-1,0,0),(0,0,-1,0),(0,0,0,-1)) psi1 = exp(-i dot(P,gmunu,X) / hbar) w1 psi2 = exp(-i dot(P,gmunu,X) / hbar) w2 psi3 = exp(i dot(P,gmunu,X) / hbar) w3 psi4 = exp(i dot(P,gmunu,X) / hbar) w4 w1 = sqrt((E + m c^2) / (2 m c^2)) * (1, 0, pz c / (E + m c^2), (px + i py) c / (E + m c^2)) w2 = sqrt((E + m c^2) / (2 m c^2)) * (0, 1, (px - i py) c / (E + m c^2), -pz c / (E + m c^2)) w3 = sqrt((E + m c^2) / (2 m c^2)) * (pz c / (E + m c^2), (px + i py) c / (E + m c^2), 1, 0) w4 = sqrt((E + m c^2) / (2 m c^2)) * ((px - i py) c / (E + m c^2), -pz c / (E + m c^2), 0, 1) E = sqrt(px^2 c^2 + py^2 c^2 + pz^2 c^2 + m^2 c^4) gamma0 = ((1,0,0,0),(0,1,0,0),(0,0,-1,0),(0,0,0,-1)) gamma1 = ((0,0,0,1),(0,0,1,0),(0,-1,0,0),(-1,0,0,0)) gamma2 = ((0,0,0,-i),(0,0,i,0),(0,i,0,0),(-i,0,0,0)) gamma3 = ((0,0,1,0),(0,0,0,-1),(-1,0,0,0),(0,1,0,0)) D(psi) = 1/c dot(gamma0,d(psi,t)) + dot(gamma1,d(psi,x)) + dot(gamma2,d(psi,y)) + dot(gamma3,d(psi,z)) "Verify wavefunctions" check(i hbar D(psi1) == m c psi1) check(i hbar D(psi2) == m c psi2) check(i hbar D(psi3) == m c psi3) check(i hbar D(psi4) == m c psi4) "ok" "Verify normalization" check(dot(psi1,conj(psi1)) == E / (m c^2)) check(dot(psi2,conj(psi2)) == E / (m c^2)) check(dot(psi3,conj(psi3)) == E / (m c^2)) check(dot(psi4,conj(psi4)) == E / (m c^2)) "ok"
Run