Compton scattering

Compton scattering is the interaction $e^{-}+\gamma \rightarrow e^{-}+\gamma$.

Define the following momentum vectors and spinors. Symbol ω is incident energy. Symbol E is total energy $E=\sqrt{\omega^{2}+m^{2}}$ where m is electron mass. Polar angle θ is the observed scattering angle. Azimuth angle ϕ cancels out in scattering calculations.

$$
\begin{aligned}
& p_{1}={\underset{\text { inbound } \gamma}{ }\left(\begin{array}{c}
\omega \\
0 \\
0 \\
\omega
\end{array}\right)}^{(} \\
& p_{2}=\left(\begin{array}{c}
E \\
0 \\
0 \\
-\omega
\end{array}\right) \\
& u_{21}=\left(\begin{array}{c}
E+m \\
0 \\
-\omega \\
0 \\
\text { inbound } e^{-} \\
\text {spin up }
\end{array}\right) \\
& p_{3}=\left(\begin{array}{c}
\omega \\
\omega \sin \theta \cos \phi \\
\omega \sin \theta \sin \phi \\
\omega \cos \theta \\
\text { outbound } \gamma
\end{array}\right) \\
& p_{4}=\left(\begin{array}{c}
E \\
-\omega \sin \theta \cos \phi \\
-\omega \sin \theta \sin \phi \\
-\omega \cos \theta \\
\text { outbound } e^{-}
\end{array}\right) \\
& u_{41}=\left(\begin{array}{c}
E+m \\
0 \\
p_{4 z} \\
p_{4 x}+i p_{4 y} \\
\text { outbound } e^{-} \\
\text {spin up }
\end{array}\right) \\
& u_{42}=\left(\begin{array}{c}
0 \\
E+m \\
p_{4 x}-i p_{4 y} \\
-p_{4 z}
\end{array}\right)
\end{aligned}
$$

The spinors are not individually normalized. Instead, a combined spinor normalization constant $N=(E+m)^{2}$ will be used.

This is the probability density for spin state $a b$. The formula is derived from Feynman diagrams for Compton scattering.

$$
\left|\mathcal{M}_{a b}\right|^{2}=\frac{e^{4}}{N}\left|-\frac{\bar{u}_{4 b} \gamma^{\mu}\left(q_{1}+m\right) \gamma^{\nu} u_{2 a}}{s-m^{2}}-\frac{\bar{u}_{4 b} \gamma^{\nu}\left(\phi_{2}+m\right) \gamma^{\mu} u_{2 a}}{u-m^{2}}\right|^{2}
$$

Symbol e is electron charge and

$$
\begin{aligned}
& \not \mathscr{q}_{1}=\left(p_{1}+p_{2}\right)^{\mu} g_{\mu \nu} \gamma^{\nu} \\
& \not q_{2}=\left(p_{4}-p_{1}\right)^{\mu} g_{\mu \nu} \gamma^{\nu}
\end{aligned}
$$

Symbols s and u are Mandelstam variables

$$
\begin{aligned}
& s=\left(p_{1}+p_{2}\right)^{2}=(E+\omega)^{2} \\
& u=\left(p_{1}-p_{4}\right)^{2}=\left(p_{1}-p_{4}\right)^{\mu} g_{\mu \nu}\left(p_{1}-p_{4}\right)^{\nu}
\end{aligned}
$$

Let

$$
a_{1}=\bar{u}_{4 b} \gamma^{\mu}\left(q_{1}+m\right) \gamma^{\nu} u_{2 a}, \quad a_{2}=\bar{u}_{4 b} \gamma^{\nu}\left(q_{2}+m\right) \gamma^{\mu} u_{2 a}
$$

Then

$$
\begin{aligned}
\left|\mathcal{M}_{a b}\right|^{2} & =\frac{e^{4}}{N}\left|-\frac{a_{1}}{s-m^{2}}-\frac{a_{2}}{u-m^{2}}\right|^{2} \\
& =\frac{e^{4}}{N}\left(-\frac{a_{1}}{s-m^{2}}-\frac{a_{2}}{u-m^{2}}\right)\left(-\frac{a_{1}}{s-m^{2}}-\frac{a_{2}}{u-m^{2}}\right)^{*} \\
& =\frac{e^{4}}{N}\left(\frac{a_{1} a_{1}^{*}}{\left(s-m^{2}\right)^{2}}+\frac{a_{1} a_{2}^{*}}{\left(s-m^{2}\right)\left(u-m^{2}\right)}+\frac{a_{1}^{*} a_{2}}{\left(s-m^{2}\right)\left(u-m^{2}\right)}+\frac{a_{2} a_{2}^{*}}{\left(u-m^{2}\right)^{2}}\right)
\end{aligned}
$$

The expected probability density $\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle$ is computed by summing $\left|\mathcal{M}_{a b}\right|^{2}$ over all spin and polarization states and then dividing by the number of inbound states. There are four inbound states. The sum over polarizations is already accomplished by contraction of $a a^{*}$ over μ and ν.

$$
\begin{aligned}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle & =\frac{1}{4} \sum_{a=1}^{2} \sum_{b=1}^{2}\left|\mathcal{M}_{a b}\right|^{2} \\
& =\frac{e^{4}}{4 N} \sum_{a=1}^{2} \sum_{b=1}^{2}\left(\frac{a_{1} a_{1}^{*}}{\left(s-m^{2}\right)^{2}}+\frac{a_{1} a_{2}^{*}}{\left(s-m^{2}\right)\left(u-m^{2}\right)}+\frac{a_{1}^{*} a_{2}}{\left(s-m^{2}\right)\left(u-m^{2}\right)}+\frac{a_{2} a_{2}^{*}}{\left(u-m^{2}\right)^{2}}\right)
\end{aligned}
$$

The Casimir trick uses matrix arithmetic to compute sums.

$$
\begin{aligned}
& f_{11}=\frac{1}{N} \sum_{a=1}^{2} \sum_{b=1}^{2} a_{1} a_{1}^{*}=\operatorname{Tr}\left(\left(\not p_{2}+m\right) \gamma^{\mu}\left(\not q_{1}+m\right) \gamma^{\nu}\left(\not p_{4}+m\right) \gamma_{\nu}\left(\not q_{1}+m\right) \gamma_{\mu}\right) \\
& f_{12}=\frac{1}{N} \sum_{a=1}^{2} \sum_{b=1}^{2} a_{1} a_{2}^{*}=\operatorname{Tr}\left(\left(\not p_{2}+m\right) \gamma^{\mu}\left(q_{2}+m\right) \gamma^{\nu}\left(\not p_{4}+m\right) \gamma_{\mu}\left(\not q_{1}+m\right) \gamma_{\nu}\right) \\
& f_{22}=\frac{1}{N} \sum_{a=1}^{2} \sum_{b=1}^{2} a_{2} a_{2}^{*}=\operatorname{Tr}\left(\left(\not p_{2}+m\right) \gamma^{\mu}\left(q_{2}+m\right) \gamma^{\nu}\left(\not p_{4}+m\right) \gamma_{\nu}\left(q_{2}+m\right) \gamma_{\mu}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{e^{4}}{4}\left(\frac{f_{11}}{\left(s-m^{2}\right)^{2}}+\frac{f_{12}}{\left(s-m^{2}\right)\left(u-m^{2}\right)}+\frac{f_{12}^{*}}{\left(s-m^{2}\right)\left(u-m^{2}\right)}+\frac{f_{22}}{\left(u-m^{2}\right)^{2}}\right) \tag{1}
\end{equation*}
$$

The following formulas are equivalent to the Casimir trick. (Recall that $a \cdot b=a^{\mu} g_{\mu \nu} b^{\nu}$)

$$
\begin{aligned}
& f_{11}=32\left(p_{1} \cdot p_{2}\right)\left(p_{1} \cdot p_{4}\right)+64 m^{2}\left(p_{1} \cdot p_{2}\right)-32 m^{2}\left(p_{1} \cdot p_{3}\right)-32 m^{2}\left(p_{1} \cdot p_{4}\right)+32 m^{4} \\
& f_{12}=16 m^{2}\left(p_{1} \cdot p_{2}\right)-16 m^{2}\left(p_{1} \cdot p_{4}\right)+32 m^{4} \\
& f_{22}=32\left(p_{1} \cdot p_{2}\right)\left(p_{1} \cdot p_{4}\right)+32 m^{2}\left(p_{1} \cdot p_{2}\right)-32 m^{2}\left(p_{1} \cdot p_{3}\right)-64 m^{2}\left(p_{1} \cdot p_{4}\right)+32 m^{4}
\end{aligned}
$$

For Mandelstam variables

$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2} \\
t & =\left(p_{1}-p_{3}\right)^{2} \\
u & =\left(p_{1}-p_{4}\right)^{2}
\end{aligned}
$$

the formulas are

$$
\begin{align*}
& f_{11}=-8 s u+24 s m^{2}+8 u m^{2}+8 m^{4} \\
& f_{12}=8 s m^{2}+8 u m^{2}+16 m^{4} \tag{2}\\
& f_{22}=-8 s u+8 s m^{2}+24 u m^{2}+8 m^{4}
\end{align*}
$$

Compton scattering experiments are typically done in the lab frame where the electron is at rest. Define Lorentz boost Λ for transforming momentum vectors to the lab frame.

$$
\Lambda=\left(\begin{array}{cccc}
E / m & 0 & 0 & \omega / m \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\omega / m & 0 & 0 & E / m
\end{array}\right)
$$

The electron is at rest in the lab frame.

$$
\Lambda p_{2}=\left(\begin{array}{c}
m \\
0 \\
0 \\
0
\end{array}\right)
$$

Mandelstam variables are invariant under a boost.

$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2}=\left(\Lambda p_{1}+\Lambda p_{2}\right)^{2} \\
t & =\left(p_{1}-p_{3}\right)^{2}=\left(\Lambda p_{1}-\Lambda p_{3}\right)^{2} \\
u & =\left(p_{1}-p_{4}\right)^{2}=\left(\Lambda p_{1}-\Lambda p_{4}\right)^{2}
\end{aligned}
$$

In the lab frame, let ω_{L} be the angular frequency of the incident photon and let ω_{L}^{\prime} be the angular frequency of the scattered photon.

$$
\begin{aligned}
& \omega_{L}=\Lambda p_{1} \cdot\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{\omega^{2}}{m}+\frac{\omega E}{m} \\
& \omega_{L}^{\prime}=\Lambda p_{3} \cdot\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{\omega^{2} \cos \theta}{m}+\frac{\omega E}{m}
\end{aligned}
$$

It can be shown that

$$
\begin{align*}
s & =m^{2}+2 m \omega_{L} \\
t & =2 m\left(\omega_{L}^{\prime}-\omega_{L}\right) \tag{3}\\
u & =m^{2}-2 m \omega_{L}^{\prime}
\end{align*}
$$

Then by (1), (2), and (3) we have

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 e^{4}\left(\frac{\omega_{L}}{\omega_{L}^{\prime}}+\frac{\omega_{L}^{\prime}}{\omega_{L}}+\left(\frac{m}{\omega_{L}}-\frac{m}{\omega_{L}^{\prime}}+1\right)^{2}-1\right)
$$

Lab scattering angle θ_{L} is given by the Compton equation

$$
\cos \theta_{L}=\frac{m}{\omega_{L}}-\frac{m}{\omega_{L}^{\prime}}+1
$$

Hence

$$
\begin{aligned}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle & =2 e^{4}\left(\frac{\omega_{L}}{\omega_{L}^{\prime}}+\frac{\omega_{L}^{\prime}}{\omega_{L}}+\cos ^{2} \theta_{L}-1\right) \\
& =2 e^{4}\left(\frac{\omega_{L}}{\omega_{L}^{\prime}}+\frac{\omega_{L}^{\prime}}{\omega_{L}}-\sin ^{2} \theta_{L}\right)
\end{aligned}
$$

Cross section

Now that we have derived $\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle$ we can investigate the angular distribution of scattered photons. For simplicity let us drop the L subscript from lab variables. From now on the symbols ω, ω^{\prime}, and θ will be lab frame variables.

The differential cross section is

$$
\left.\frac{d \sigma}{d \Omega}=\left.\frac{1}{4\left(4 \pi \varepsilon_{0}\right)^{2} s}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\langle | \mathcal{M}\right|^{2}\right\rangle
$$

where

$$
s=m^{2}+2 m \omega=\left(m c^{2}\right)^{2}+2\left(m c^{2}\right)(\hbar \omega)
$$

and ω^{\prime} is given by the Compton equation

$$
\omega^{\prime}=\frac{\omega}{1+\frac{\hbar \omega}{m c^{2}}(1-\cos \theta)}
$$

For the lab frame we have

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 e^{4}\left(\frac{\omega}{\omega^{\prime}}+\frac{\omega^{\prime}}{\omega}-\sin ^{2} \theta\right)
$$

Hence in the lab frame

$$
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{2\left(4 \pi \varepsilon_{0}\right)^{2} s}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left(\frac{\omega}{\omega^{\prime}}+\frac{\omega^{\prime}}{\omega}-\sin ^{2} \theta\right)
$$

Noting that

$$
e^{2}=4 \pi \varepsilon_{0} \alpha \hbar c
$$

we have

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}(\hbar c)^{2}}{2 s}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left(\frac{\omega}{\omega^{\prime}}+\frac{\omega^{\prime}}{\omega}-\sin ^{2} \theta\right)
$$

Noting that

$$
d \Omega=\sin \theta d \theta d \phi
$$

we also have

$$
d \sigma=\frac{\alpha^{2}(\hbar c)^{2}}{2 s}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left(\frac{\omega}{\omega^{\prime}}+\frac{\omega^{\prime}}{\omega}-\sin ^{2} \theta\right) \sin \theta d \theta d \phi
$$

Let $S\left(\theta_{1}, \theta_{2}\right)$ be the following surface integral of $d \sigma$.

$$
S\left(\theta_{1}, \theta_{2}\right)=\int_{0}^{2 \pi} \int_{\theta_{1}}^{\theta_{2}} d \sigma
$$

The solution is

$$
S\left(\theta_{1}, \theta_{2}\right)=\frac{2 \pi \alpha^{2}(\hbar c)^{2}}{2 s}\left(I\left(\theta_{2}\right)-I\left(\theta_{1}\right)\right)
$$

where

$$
\begin{aligned}
I(\theta)=-\frac{\cos \theta}{R^{2}}+\log (1+R(1 & -\cos \theta))\left(\frac{1}{R}-\frac{2}{R^{2}}-\frac{2}{R^{3}}\right) \\
& -\frac{1}{2 R(1+R(1-\cos \theta))^{2}}+\frac{1}{1+R(1-\cos \theta)}\left(-\frac{2}{R^{2}}-\frac{1}{R^{3}}\right)
\end{aligned}
$$

and

$$
R=\frac{\hbar \omega}{m c^{2}}
$$

The cumulative distribution function is

$$
F(\theta)=\frac{S(0, \theta)}{S(0, \pi)}=\frac{I(\theta)-I(0)}{I(\pi)-I(0)}, \quad 0 \leq \theta \leq \pi
$$

The probability of observing scattering events in the interval θ_{1} to θ_{2} is

$$
P\left(\theta_{1} \leq \theta \leq \theta_{2}\right)=F\left(\theta_{2}\right)-F\left(\theta_{1}\right)
$$

Let N be the total number of scattering events from an experiment. Then the number of scattering events in the interval θ_{1} to θ_{2} is predicted to be

$$
N P\left(\theta_{1} \leq \theta \leq \theta_{2}\right)
$$

The probability density function is

$$
f(\theta)=\frac{d F(\theta)}{d \theta}=\frac{1}{I(\pi)-I(0)}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left(\frac{\omega}{\omega^{\prime}}+\frac{\omega^{\prime}}{\omega}-\sin ^{2} \theta\right) \sin \theta
$$

Thomson scattering

For $\hbar \omega \ll m c^{2}$ we have

$$
\omega^{\prime}=\frac{\omega}{1+\frac{\hbar \omega}{m c^{2}}(1-\cos \theta)} \approx \omega
$$

Hence we can use the approximations

$$
\omega=\omega^{\prime} \quad \text { and } \quad s=\left(m c^{2}\right)^{2}
$$

to obtain

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \hbar^{2}}{2 m^{2} c^{2}}\left(1+\cos ^{2} \theta\right)
$$

which is the formula for Thomson scattering.

High energy approximation

For $\omega \gg m$ a useful approximation is to set $m=0$ and obtain

$$
\begin{aligned}
& f_{11}=-8 s u \\
& f_{12}=0 \\
& f_{22}=-8 s u
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle & =\frac{e^{4}}{4}\left(\frac{-8 s u}{s^{2}}+\frac{-8 s u}{u^{2}}\right) \\
& =2 e^{4}\left(-\frac{u}{s}-\frac{s}{u}\right)
\end{aligned}
$$

Also for $m=0$ the Mandelstam variables s and u are

$$
\begin{aligned}
s & =4 \omega^{2} \\
u & =-2 \omega^{2}(\cos \theta+1)
\end{aligned}
$$

Hence

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2 e^{4}\left(\frac{\cos \theta+1}{2}+\frac{2}{\cos \theta+1}\right)
$$

Notes

Here are a few notes regarding the Eigenmath scripts.
Start by writing out a_{1} and a_{2} in full component form.

$$
a_{1}^{\mu \nu}=\bar{u}_{4 \alpha} \gamma^{\mu \alpha}{ }_{\beta}\left(q_{1}+m\right)^{\beta}{ }_{\rho} \gamma^{\nu \rho}{ }_{\sigma} u_{2}^{\sigma}, \quad a_{2}^{\nu \mu}=\bar{u}_{4 \alpha} \gamma^{\nu \alpha}{ }_{\beta}\left(q_{2}+m\right)^{\beta}{ }_{\rho} \gamma^{\mu \rho}{ }_{\sigma} u_{2}^{\sigma}
$$

Transpose γ tensors to form inner products over α and ρ.

$$
a_{1}^{\mu \nu}=\bar{u}_{4 \alpha} \gamma^{\alpha \mu}{ }_{\beta}\left(q_{1}+m\right)^{\beta}{ }_{\rho} \gamma^{\rho \nu}{ }_{\sigma} u_{2}^{\sigma}, \quad a_{2}^{\nu \mu}=\bar{u}_{4 \alpha} \gamma^{\alpha \nu}{ }_{\beta}\left(q_{2}+m\right)^{\beta}{ }_{\rho} \gamma^{\rho \mu}{ }_{\sigma} u_{2}^{\sigma}
$$

Convert transposed γ to Eigenmath code.

$$
\gamma^{\alpha \mu}{ }_{\beta} \rightarrow \text { gammaT }=\text { transpose (gamma) }
$$

Then to compute a_{1} we have

$$
\begin{aligned}
a_{1}=\bar{u}_{4 \alpha} \gamma^{\alpha \mu}{ }_{\beta}\left(q_{1}\right. & +m)^{\beta}{ }_{\rho} \gamma^{\rho \nu}{ }_{\sigma} u_{2}^{\sigma} \\
& \rightarrow \quad \text { a1 }=\operatorname{dot}(u 4 b a r[s 4], \text { gammaT,qslash1 }+\mathrm{m} \text { I,gammaT,u2[s2]) }
\end{aligned}
$$

where s_{2} and s_{4} are spin indices. Similarly for a_{2} we have

$$
\begin{aligned}
a_{2}=\bar{u}_{4 \alpha} \gamma^{\alpha \nu}{ }_{\beta}\left(q_{2}\right. & +m)^{\beta}{ }_{\rho} \gamma^{\rho \mu}{ }_{\sigma} u_{2}^{\sigma} \\
& \rightarrow \mathrm{a} 2=\operatorname{dot}(u 4 b a r[s 4], \text { gammaT,qslash2 }+\mathrm{mI}, \text { gammaT,u2[s2]) }
\end{aligned}
$$

In component notation the product $a_{1} a_{1}^{*}$ is

$$
a_{1} a_{1}^{*}=a_{1}^{\mu \nu} a_{1}^{* \mu \nu}
$$

To sum over μ and ν it is necessary to lower indices with the metric tensor. Also, transpose a_{1}^{*} to form an inner product with ν.

$$
a_{1} a_{1}^{*}=a_{1}^{\mu \nu} a_{1 \nu \mu}^{*}
$$

Convert to Eigenmath code. The dot function sums over ν and the contract function sums over μ.

$$
a_{1} a_{1}^{*} \rightarrow \text { a11 = contract }(\operatorname{dot}(a 1, \text { gmunu,transpose }(\operatorname{conj}(a 1)), \text { gmunu }))
$$

Similarly for $a_{2} a_{2}^{*}$ we have

$$
a_{2} a_{2}^{*} \rightarrow \text { a22 }=\text { contract }(\operatorname{dot}(\mathrm{a} 2, \text { gmunu }, \text { transpose }(\operatorname{conj}(\mathrm{a} 2)), \text { gmunu }))
$$

The product $a_{1} a_{2}^{*}$ does not require a transpose because $a_{1} a_{2}^{*}=a_{1}^{\mu \nu} a_{2}^{* \nu \mu}$.

$$
a_{1} a_{2}^{*} \rightarrow \mathrm{a} 12=\operatorname{contract}(\operatorname{dot}(\mathrm{a} 1, \text { gmunu }, \operatorname{conj}(\mathrm{a} 2), \text { gmunu }))
$$

In component notation, a trace operator becomes a sum over an index, in this case α.

$$
\begin{aligned}
f_{11} & =\operatorname{Tr}\left(\left(\not p_{2}+m\right) \gamma^{\mu}\left(\not q_{1}+m\right) \gamma^{\nu}\left(\not{ }_{4}+m\right) \gamma_{\nu}\left(\not q_{1}+m\right) \gamma_{\mu}\right) \\
& =\left(\not p_{2}+m\right)^{\alpha}{ }_{\beta} \gamma^{\mu \beta}{ }_{\rho}\left(\not q_{1}+m\right)^{\rho}{ }_{\sigma} \gamma^{\nu \sigma}{ }_{\tau}\left(\not p_{4}+m\right)^{\tau}{ }_{\delta} \gamma_{\nu}{ }^{\delta}{ }_{\eta}\left(q_{1}+m\right)^{\eta}{ }_{\xi} \gamma_{\mu}{ }^{\xi}{ }_{\alpha}
\end{aligned}
$$

As before, transpose γ tensors to form inner products.

$$
f_{11}=\left(\not p_{2}+m\right)^{\alpha}{ }_{\beta} \gamma^{\beta \mu}{ }_{\rho}\left(\not q_{1}+m\right)^{\rho}{ }_{\sigma} \gamma^{\sigma \nu}{ }_{\tau}\left(\not p_{4}+m\right)^{\tau}{ }_{\delta} \gamma^{\delta}{ }_{\nu \eta}\left(q_{1}+m\right)^{\eta}{ }_{\xi} \gamma^{\xi}{ }_{\mu \alpha}
$$

To convert to Eigenmath code, use an intermediate variable for the inner product.

$$
T^{\alpha \mu \nu}{ }_{\nu \mu \alpha} \rightarrow \mathrm{T}=\operatorname{dot}(\mathrm{P} 2, \text { gammaT, Q1,gammaT, P4, gammaL, Q1, gammaL) }
$$

Now sum over the indices of T. The innermost contract sums over ν then the next contract sums over μ. Finally the outermost contract sums over α.

$$
f_{11} \rightarrow f 11=\operatorname{contract}(\operatorname{contract}(\operatorname{contract}(T, 3,4), 2,3))
$$

Follow suit for f_{22}. For f_{12} the order of the rightmost μ and ν is reversed.

$$
f_{12}=\operatorname{Tr}\left(\left(\not p_{2}+m\right) \gamma^{\mu}\left(q_{2}+m\right) \gamma^{\nu}\left(\not p_{4}+m\right) \gamma_{\mu}\left(q_{1}+m\right) \gamma_{\nu}\right)
$$

The resulting inner product is $T^{\alpha \mu \nu}{ }_{\mu \nu \alpha}$ so the contraction is different.

$$
f_{12} \rightarrow f 12=\operatorname{contract}(\operatorname{contract}(\operatorname{contract}(T, 3,5), 2,3))
$$

The innermost contract sums over ν followed by sum over μ then sum over α.

