Compton scattering

Compton scattering is the interaction e™ + v — e~ + 7.

Define the following momentum vectors and spinors. Symbol w is incident energy. Symbol
E is total energy E = vw? +m? where m is electron mass. Polar angle 6 is the observed
scattering angle. Azimuth angle ¢ cancels out in scattering calculations.
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The spinors are not individually normalized.

Instead, a combined spinor normalization

constant N = (E +m)? will be used.

This is the probability density for spin state ab. The formula is derived from Feynman
diagrams for Compton scattering.
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Symbol e is electron charge and
ql = (pl +p2)uguyfyy
do = (Pa = P1)" gu”
Symbols s and u are Mandelstam variables
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u=(p1 —p1)* = (p1 — P2)" G (P1 — Ps1)”
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The expected probability density (|M]?) is computed by summing | M |? over all spin and
polarization states and then dividing by the number of inbound states. There are four
inbound states. The sum over polarizations is already accomplished by contraction of aa*
over i and v.
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The following formulas are equivalent to the Casimir trick. (Recall that a - b = a*g,,b")

fi1 = 32(p1 - p2)(p1 - pa) + 64m>(py - po) — 32m>(py - p3) — 32m>(py - pa) + 32m*
fi2 = 16m2(py - p2) — 16m>(py - pa) + 32m*
foo = 32(p1 - p2)(p1 - pa) + 32m*(p1 - p2) — 32m*(p1 - p3) — 64m>(p1 - pa) + 32m*

For Mandelstam variables

s = (p1 +p2)2
t=(p1 —p3)°
U= (pl - p4)2

the formulas are
fi1 = —8su + 24sm? + Sum? + 8m?

fi2 = 8sm?* + 8um? + 16m* (2)
foo = —8su + 8sm? + 24um? + 8m*

Compton scattering experiments are typically done in the lab frame where the electron is at
rest. Define Lorentz boost A for transforming momentum vectors to the lab frame.
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The electron is at rest in the lab frame.
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Mandelstam variables are invariant under a boost.
s = (p1 +p2)2 = (Apy + Ap2)2
t=(p1 —p3)* = (Ap1 — Aps)®
U = (pl - p4)2 = (Apl - Ap4)2

In the lab frame, let w;, be the angular frequency of the incident photon and let w} be the
angular frequency of the scattered photon.
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It can be shown that
s =m?+ 2mwy,

t =2m(w), —wyr) (3)
u=m?— 2muw}
Then by (1), (2), and (3) we have
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Lab scattering angle 0, is given by the Compton equation
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Cross section

Now that we have derived (|M|?) we can investigate the angular distribution of scattered
photons. For simplicity let us drop the L subscript from lab variables. From now on the
symbols w, w’, and 8 will be lab frame variables.

The differential cross section is
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where
s =m? 4+ 2mw = (mc?)? + 2(mc?) (hw)
and W' is given by the Compton equation
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For the lab frame we have

Hence in the lab frame



Noting that
e? = dnegahc
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we have

Noting that

we also have
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Let S(6y,02) be the following surface integral of do.
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The cumulative distribution function is
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The probability of observing scattering events in the interval 8, to 6, is

Let N be the total number of scattering events from an experiment. Then the number of
scattering events in the interval 6, to 6, is predicted to be

NP6, <6< )

The probability density function is
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Thomson scattering

For hw < mc? we have

W= d R
B 1+ 2 (1 - cosb) ~
Hence we can use the approximations
w=uw and s=(mc®)?
to obtain y 2p2
o Q@
— = ——— (14 cos?6
Ay 2m2c? ( + )

which is the formula for Thomson scattering.

High energy approximation

For w > m a useful approximation is to set m = 0 and obtain

fi1 = —8su
fi2=0
fgg = —8SU

Hence

Also for m = 0 the Mandelstam variables s and u are

s = dw?
u = —2w*(cosf + 1)

Hence
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Notes

Here are a few notes regarding the Eigenmath scripts.

Start by writing out a; and as in full component form.

= a5, ) oS, 0 = Tl + )’ 0"

Transpose v tensors to form inner products over av and p.

o = Y™ s(d, + M) Ao, a8 = W™ (g, + M)’y s
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Convert transposed v to Eigenmath code.
y*s — gammaT = transpose(gamma)
Then to compute a; we have
ay = Usay™s5(d, +m)’ ™ gus
— al = dot(uédbar[s4],gammaT,qgslashl + m I,gammaT,u2[s2])
where s, and s4 are spin indices. Similarly for as we have
ay = Usay™ 5(d, +m)’ ™ s
— a2 = dot(udbar[s4],gammaT,qslash? + m I,gammaT,u2[s2])
In component notation the product a;aj is
ara; = a{”a"”

To sum over p and v it is necessary to lower indices with the metric tensor. Also, transpose
a; to form an inner product with v.

pv

*

Convert to Eigenmath code. The dot function sums over v and the contract function sums
over fi.

aja) — all = contract(dot(al,gmunu,transpose(conj(al)),gmnunu))
Similarly for asaj we have
asay; — a22 = contract(dot(a2,gmunu,transpose(conj(a2)),gnunu))
The product a;aj does not require a transpose because ajal = af”ay™.
ajay — al2 = contract(dot(al,gmunu,conj(a2),gmunu))
In component notation, a trace operator becomes a sum over an index, in this case a.
fur =T, m)y" (g, +m)y” (9, + m)u (g, +m))
= (?2 + m)a57uﬁp(g1 + m)pU’VWT(?LL + m)Ta%dn(fll + m)n@/lﬁa
As before, transpose « tensors to form inner products.
fi1 =Py +m) 5™ (4, + M)V (B, + 1) 67 o (g, + 7)Y e
To convert to Eigenmath code, use an intermediate variable for the inner product.

", — T = dot(P2,gammaT,Q1,gammaT,P4,gammal.,Q1,gammal)
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Now sum over the indices of T'. The innermost contract sums over v then the next contract
sums over y. Finally the outermost contract sums over «.

fir — f11 = contract(contract(contract(T,3,4),2,3))

Follow suit for fys. For fi5 the order of the rightmost 1 and v is reversed.

fiz = T (, + M)y (g, + M)y (p, + m)ald, +m)v )
The resulting inner product is T, so the contraction is different.
fi2 — £12 = contract(contract(contract(T,3,5),2,3))

The innermost contract sums over v followed by sum over y then sum over a.



