
Compton scattering

Compton scattering is the interaction e− + γ → e− + γ.

e−γ

γ

e−

θ

Define the following momentum vectors and spinors. Symbol ω is incident energy. Symbol
E is total energy E =

√
ω2 +m2 where m is electron mass. Polar angle θ is the observed

scattering angle. Azimuth angle ϕ cancels out in scattering calculations.

p1 =


ω
0
0
ω


inbound γ

p2 =


E
0
0
−ω


inbound e−

u21 =


E +m

0
−ω
0


inbound e−
spin up

u22 =


0

E +m
0
ω


inbound e−
spin down

p3 =


ω

ω sin θ cosϕ
ω sin θ sinϕ

ω cos θ


outbound γ

p4 =


E

−ω sin θ cosϕ
−ω sin θ sinϕ

−ω cos θ


outbound e−

u41 =


E +m

0
p4z

p4x + ip4y


outbound e−

spin up

u42 =


0

E +m
p4x − ip4y

−p4z


outbound e−
spin down

The spinors are not individually normalized. Instead, a combined spinor normalization
constant N = (E +m)2 will be used.

This is the probability density for spin state ab. The formula is derived from Feynman
diagrams for Compton scattering.

|Mab|2 =
e4

N

∣∣∣∣− ū4bγ
µ(/q1 +m)γνu2a

s−m2
−

ū4bγ
ν(/q2 +m)γµu2a

u−m2

∣∣∣∣2
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Symbol e is electron charge and

̸q1 = (p1 + p2)
µgµνγ

ν

̸q2 = (p4 − p1)
µgµνγ

ν

Symbols s and u are Mandelstam variables

s = (p1 + p2)
2 = (E + ω)2

u = (p1 − p4)
2 = (p1 − p4)

µgµν(p1 − p4)
ν

Let
a1 = ū4bγ

µ(/q1 +m)γνu2a, a2 = ū4bγ
ν(/q2 +m)γµu2a

Then

|Mab|2 =
e4

N

∣∣∣∣− a1
s−m2

− a2
u−m2

∣∣∣∣2
=

e4

N

(
− a1
s−m2

− a2
u−m2

)(
− a1
s−m2

− a2
u−m2

)∗

=
e4

N

(
a1a

∗
1

(s−m2)2
+

a1a
∗
2

(s−m2)(u−m2)
+

a∗1a2
(s−m2)(u−m2)

+
a2a

∗
2

(u−m2)2

)
The expected probability density ⟨|M|2⟩ is computed by summing |Mab|2 over all spin and
polarization states and then dividing by the number of inbound states. There are four
inbound states. The sum over polarizations is already accomplished by contraction of aa∗

over µ and ν.

⟨|M|2⟩ = 1

4

2∑
a=1

2∑
b=1

|Mab|2

=
e4

4N

2∑
a=1

2∑
b=1

(
a1a

∗
1

(s−m2)2
+

a1a
∗
2

(s−m2)(u−m2)
+

a∗1a2
(s−m2)(u−m2)

+
a2a

∗
2

(u−m2)2

)
The Casimir trick uses matrix arithmetic to compute sums.

f11 =
1

N

2∑
a=1

2∑
b=1

a1a
∗
1 = Tr

(
(/p2 +m)γµ(/q1 +m)γν(/p4 +m)γν(/q1 +m)γµ

)
f12 =

1

N

2∑
a=1

2∑
b=1

a1a
∗
2 = Tr

(
(/p2 +m)γµ(/q2 +m)γν(/p4 +m)γµ(/q1 +m)γν

)
f22 =

1

N

2∑
a=1

2∑
b=1

a2a
∗
2 = Tr

(
(/p2 +m)γµ(/q2 +m)γν(/p4 +m)γν(/q2 +m)γµ

)
Hence

⟨|M|2⟩ = e4

4

(
f11

(s−m2)2
+

f12
(s−m2)(u−m2)

+
f ∗
12

(s−m2)(u−m2)
+

f22
(u−m2)2

)
(1)
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The following formulas are equivalent to the Casimir trick. (Recall that a · b = aµgµνb
ν)

f11 = 32(p1 · p2)(p1 · p4) + 64m2(p1 · p2)− 32m2(p1 · p3)− 32m2(p1 · p4) + 32m4

f12 = 16m2(p1 · p2)− 16m2(p1 · p4) + 32m4

f22 = 32(p1 · p2)(p1 · p4) + 32m2(p1 · p2)− 32m2(p1 · p3)− 64m2(p1 · p4) + 32m4

For Mandelstam variables

s = (p1 + p2)
2

t = (p1 − p3)
2

u = (p1 − p4)
2

the formulas are
f11 = −8su+ 24sm2 + 8um2 + 8m4

f12 = 8sm2 + 8um2 + 16m4

f22 = −8su+ 8sm2 + 24um2 + 8m4

(2)

Compton scattering experiments are typically done in the lab frame where the electron is at
rest. Define Lorentz boost Λ for transforming momentum vectors to the lab frame.

Λ =


E/m 0 0 ω/m
0 1 0 0
0 0 1 0

ω/m 0 0 E/m


The electron is at rest in the lab frame.

Λp2 =


m
0
0
0


Mandelstam variables are invariant under a boost.

s = (p1 + p2)
2 = (Λp1 + Λp2)

2

t = (p1 − p3)
2 = (Λp1 − Λp3)

2

u = (p1 − p4)
2 = (Λp1 − Λp4)

2

In the lab frame, let ωL be the angular frequency of the incident photon and let ω′
L be the

angular frequency of the scattered photon.

ωL = Λp1 ·


1
0
0
0

 =
ω2

m
+

ωE

m

ω′
L = Λp3 ·


1
0
0
0

 =
ω2 cos θ

m
+

ωE

m
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It can be shown that
s = m2 + 2mωL

t = 2m(ω′
L − ωL)

u = m2 − 2mω′
L

(3)

Then by (1), (2), and (3) we have

⟨|M|2⟩ = 2e4

(
ωL

ω′
L

+
ω′
L

ωL

+

(
m

ωL

− m

ω′
L

+ 1

)2

− 1

)

Lab scattering angle θL is given by the Compton equation

cos θL =
m

ωL

− m

ω′
L

+ 1

Hence

⟨|M|2⟩ = 2e4
(
ωL

ω′
L

+
ω′
L

ωL

+ cos2 θL − 1

)
= 2e4

(
ωL

ω′
L

+
ω′
L

ωL

− sin2 θL

)

Cross section

Now that we have derived ⟨|M|2⟩ we can investigate the angular distribution of scattered
photons. For simplicity let us drop the L subscript from lab variables. From now on the
symbols ω, ω′, and θ will be lab frame variables.

The differential cross section is

dσ

dΩ
=

1

4(4πε0)2s

(
ω′

ω

)2

⟨|M|2⟩

where
s = m2 + 2mω = (mc2)2 + 2(mc2)(ℏω)

and ω′ is given by the Compton equation

ω′ =
ω

1 + ℏω
mc2

(1− cos θ)

For the lab frame we have

⟨|M|2⟩ = 2e4
(
ω

ω′ +
ω′

ω
− sin2 θ

)
Hence in the lab frame

dσ

dΩ
=

e4

2(4πε0)2s

(
ω′

ω

)2(
ω

ω′ +
ω′

ω
− sin2 θ

)
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Noting that
e2 = 4πε0αℏc

we have
dσ

dΩ
=

α2(ℏc)2

2s

(
ω′

ω

)2(
ω

ω′ +
ω′

ω
− sin2 θ

)
Noting that

dΩ = sin θ dθ dϕ

we also have

dσ =
α2(ℏc)2

2s

(
ω′

ω

)2(
ω

ω′ +
ω′

ω
− sin2 θ

)
sin θ dθ dϕ

Let S(θ1, θ2) be the following surface integral of dσ.

S(θ1, θ2) =

∫ 2π

0

∫ θ2

θ1

dσ

The solution is

S(θ1, θ2) =
2πα2(ℏc)2

2s

(
I(θ2)− I(θ1)

)
where

I(θ) = −cos θ

R2
+ log

(
1 +R(1− cos θ)

)( 1

R
− 2

R2
− 2

R3

)
− 1

2R
(
1 +R(1− cos θ)

)2 +
1

1 +R(1− cos θ)

(
− 2

R2
− 1

R3

)
and

R =
ℏω
mc2

The cumulative distribution function is

F (θ) =
S(0, θ)

S(0, π)
=

I(θ)− I(0)

I(π)− I(0)
, 0 ≤ θ ≤ π

The probability of observing scattering events in the interval θ1 to θ2 is

P (θ1 ≤ θ ≤ θ2) = F (θ2)− F (θ1)

Let N be the total number of scattering events from an experiment. Then the number of
scattering events in the interval θ1 to θ2 is predicted to be

NP (θ1 ≤ θ ≤ θ2)

The probability density function is

f(θ) =
dF (θ)

dθ
=

1

I(π)− I(0)

(
ω′

ω

)2(
ω

ω′ +
ω′

ω
− sin2 θ

)
sin θ
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Thomson scattering

For ℏω ≪ mc2 we have
ω′ =

ω

1 + ℏω
mc2

(1− cos θ)
≈ ω

Hence we can use the approximations

ω = ω′ and s = (mc2)2

to obtain
dσ

dΩ
=

α2ℏ2

2m2c2
(
1 + cos2 θ

)
which is the formula for Thomson scattering.

High energy approximation

For ω ≫ m a useful approximation is to set m = 0 and obtain

f11 = −8su

f12 = 0

f22 = −8su

Hence

⟨|M|2⟩ = e4

4

(
−8su

s2
+

−8su

u2

)
= 2e4

(
−u

s
− s

u

)
Also for m = 0 the Mandelstam variables s and u are

s = 4ω2

u = −2ω2(cos θ + 1)

Hence

⟨|M|2⟩ = 2e4
(
cos θ + 1

2
+

2

cos θ + 1

)
Notes

Here are a few notes regarding the Eigenmath scripts.

Start by writing out a1 and a2 in full component form.

aµν1 = ū4αγ
µα

β(/q1 +m)βργ
νρ

σu
σ
2 , aνµ2 = ū4αγ

να
β(/q2 +m)βργ

µρ
σu

σ
2

Transpose γ tensors to form inner products over α and ρ.

aµν1 = ū4αγ
αµ

β(/q1 +m)βργ
ρν

σu
σ
2 , aνµ2 = ū4αγ

αν
β(/q2 +m)βργ

ρµ
σu

σ
2
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Convert transposed γ to Eigenmath code.

γαµ
β → gammaT = transpose(gamma)

Then to compute a1 we have

a1 = ū4αγ
αµ

β(/q1 +m)βργ
ρν

σu
σ
2

→ a1 = dot(u4bar[s4],gammaT,qslash1 + m I,gammaT,u2[s2])

where s2 and s4 are spin indices. Similarly for a2 we have

a2 = ū4αγ
αν

β(/q2 +m)βργ
ρµ

σu
σ
2

→ a2 = dot(u4bar[s4],gammaT,qslash2 + m I,gammaT,u2[s2])

In component notation the product a1a
∗
1 is

a1a
∗
1 = aµν1 a∗µν1

To sum over µ and ν it is necessary to lower indices with the metric tensor. Also, transpose
a∗1 to form an inner product with ν.

a1a
∗
1 = aµν1 a∗1νµ

Convert to Eigenmath code. The dot function sums over ν and the contract function sums
over µ.

a1a
∗
1 → a11 = contract(dot(a1,gmunu,transpose(conj(a1)),gmunu))

Similarly for a2a
∗
2 we have

a2a
∗
2 → a22 = contract(dot(a2,gmunu,transpose(conj(a2)),gmunu))

The product a1a
∗
2 does not require a transpose because a1a

∗
2 = aµν1 a∗νµ2 .

a1a
∗
2 → a12 = contract(dot(a1,gmunu,conj(a2),gmunu))

In component notation, a trace operator becomes a sum over an index, in this case α.

f11 = Tr
(
(/p2 +m)γµ(/q1 +m)γν(/p4 +m)γν(/q1 +m)γµ

)
= (/p2 +m)αβγ

µβ
ρ(/q1 +m)ρσγ

νσ
τ (/p4 +m)τ δγν

δ
η(/q1 +m)ηξγµ

ξ
α

As before, transpose γ tensors to form inner products.

f11 = (/p2 +m)αβγ
βµ

ρ(/q1 +m)ρσγ
σν

τ (/p4 +m)τ δγ
δ
νη(/q1 +m)ηξγ

ξ
µα

To convert to Eigenmath code, use an intermediate variable for the inner product.

Tαµν
νµα → T = dot(P2,gammaT,Q1,gammaT,P4,gammaL,Q1,gammaL)
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Now sum over the indices of T . The innermost contract sums over ν then the next contract
sums over µ. Finally the outermost contract sums over α.

f11 → f11 = contract(contract(contract(T,3,4),2,3))

Follow suit for f22. For f12 the order of the rightmost µ and ν is reversed.

f12 = Tr
(
(/p2 +m)γµ(/q2 +m)γν(/p4 +m)γµ(/q1 +m)γν

)
The resulting inner product is Tαµν

µνα so the contraction is different.

f12 → f12 = contract(contract(contract(T,3,5),2,3))

The innermost contract sums over ν followed by sum over µ then sum over α.
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