Coherent state

Let $|\Psi\rangle$ be the following "coherent" state where \bar{n} is the mean number of photons and $|n\rangle$ is the state with exactly n photons.

$$
|\Psi\rangle=\sum_{n=0}^{\infty} \sqrt{\frac{\bar{n}^{n} \exp (-\bar{n})}{n!}} \exp \left(-i\left(n+\frac{1}{2}\right) \omega t\right)|n\rangle
$$

Let \hat{a} be the following "lowering" operator.

$$
\hat{a}|n\rangle=\sqrt{n}|n-1\rangle
$$

Apply operator \hat{a} to coherent state $|\Psi\rangle$ to obtain (see derivation below)

$$
\hat{a}|\Psi\rangle=\sqrt{\bar{n}} \exp (-i \omega t)|\Psi\rangle
$$

and

$$
\langle\Psi| \hat{a}^{\dagger}=(\hat{a}|\Psi\rangle)^{\dagger}=\sqrt{\bar{n}} \exp (i \omega t)\langle\Psi|
$$

Let \hat{E} be the following electric field operator.

$$
\hat{E}=i \sqrt{\frac{\hbar \omega}{2 \epsilon_{0}}}\left(\hat{a}-\hat{a}^{\dagger}\right)
$$

Note that \hat{E} is Hermitian.

$$
\hat{E}=\hat{E}^{\dagger}
$$

Hermitian operators have real eigenvalues, hence \hat{E} corresponds to an observable quantity. The expected electric field is

$$
\langle\hat{E}\rangle=\langle\Psi| \hat{E}|\Psi\rangle=i \sqrt{\frac{\hbar \omega}{2 \epsilon_{0}}}\langle\Psi|\left(\hat{a}-\hat{a}^{\dagger}\right)|\Psi\rangle
$$

By distributive law

$$
\langle\hat{E}\rangle=i \sqrt{\frac{\hbar \omega}{2 \epsilon_{0}}}\left(\langle\Psi| \hat{a}|\Psi\rangle-\langle\Psi| \hat{a}^{\dagger}|\Psi\rangle\right)
$$

Substitute eigenvalues for operators.

$$
\langle\hat{E}\rangle=i \sqrt{\frac{\hbar \omega}{2 \epsilon_{0}}}(\sqrt{\bar{n}} \exp (-i \omega t)\langle\Psi \mid \Psi\rangle-\sqrt{\bar{n}} \exp (i \omega t)\langle\Psi \mid \Psi\rangle)
$$

$\operatorname{By}\langle\Psi \mid \Psi\rangle=1$ we have

$$
\langle\hat{E}\rangle=i \sqrt{\frac{\hbar \omega}{2 \epsilon_{0}}}(\sqrt{\bar{n}} \exp (-i \omega t)-\sqrt{\bar{n}} \exp (i \omega t))
$$

Recalling that

$$
2 \sin (\omega t)=i \exp (-i \omega t)-i \exp (i \omega t)
$$

we have

$$
\langle\hat{E}\rangle=\sqrt{\frac{2 \bar{n} \hbar \omega}{\epsilon_{0}}} \sin (\omega t)
$$

Let \hat{B} be the following magnetic field operator.

$$
\hat{B}=\sqrt{\frac{\hbar \omega \mu_{0}}{2}}\left(\hat{a}+\hat{a}^{\dagger}\right)
$$

By deduction similar to that for $\langle\hat{E}\rangle$ we obtain

$$
\langle\hat{B}\rangle=\sqrt{2 \bar{n} \hbar \omega \mu_{0}} \cos (\omega t)
$$

The energy of an electromagnetic wave is

$$
U=\frac{\epsilon_{0}}{2}|\mathbf{E}|^{2}+\frac{1}{2 \mu_{0}}|\mathbf{B}|^{2}
$$

For linear polarization there exists a rotation matrix R such that

$$
R \mathbf{E}=\left(\begin{array}{c}
E \\
0 \\
0
\end{array}\right), \quad R \mathbf{B}=\left(\begin{array}{c}
0 \\
B \\
0
\end{array}\right)
$$

Hence in the rotated frame

$$
U=\frac{\epsilon_{0}}{2} E^{2}+\frac{1}{2 \mu_{0}} B^{2}
$$

For a quantum field we have

$$
U=\frac{\epsilon_{0}}{2}\left\langle\hat{E}^{2}\right\rangle+\frac{1}{2 \mu_{0}}\left\langle\hat{B}^{2}\right\rangle
$$

where

$$
\begin{aligned}
\left\langle\hat{E}^{2}\right\rangle & =\langle\Psi| \hat{E} \hat{E}|\Psi\rangle=-\frac{\hbar \omega}{2 \epsilon_{0}}\langle\Psi|\left(\hat{a}-\hat{a}^{\dagger}\right)\left(\hat{a}-\hat{a}^{\dagger}\right)|\Psi\rangle \\
\left\langle\hat{B}^{2}\right\rangle & =\langle\Psi| \hat{B} \hat{B}|\Psi\rangle=\frac{\hbar \omega \mu_{0}}{2}\langle\Psi|\left(\hat{a}+\hat{a}^{\dagger}\right)\left(\hat{a}+\hat{a}^{\dagger}\right)|\Psi\rangle
\end{aligned}
$$

For the coherent state

$$
\begin{aligned}
\langle\Psi| \hat{a} \hat{a}|\Psi\rangle & =(\sqrt{\bar{n}} \exp (-i \omega t))^{2} & & =\bar{n} \exp (-2 i \omega t) \\
\langle\Psi| \hat{a}^{\dagger} \hat{a}|\Psi\rangle & =(\sqrt{\bar{n}} \exp (i \omega t))(\sqrt{\bar{n}} \exp (-i \omega t)) & & =\bar{n} \\
\langle\Psi| \hat{a} \hat{a}^{\dagger}|\Psi\rangle & =\langle\Psi|\left(\hat{a}^{\dagger} \hat{a}+1\right)|\Psi\rangle=\langle\Psi| a^{\dagger} \hat{a}|\Psi\rangle+\langle\Psi \mid \Psi\rangle & & =\bar{n}+1 \\
\langle\Psi| \hat{a}^{\dagger} \hat{a}^{\dagger}|\Psi\rangle & =(\sqrt{\bar{n}} \exp (i \omega t))^{2} & & =\bar{n} \exp (2 i \omega t)
\end{aligned}
$$

The expectation $\bar{n}+1$ for $\hat{a} \hat{a}^{\dagger}$ is from the commutator

$$
\hat{a} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a}=1
$$

Using the expectation values derived above we now have

$$
\begin{aligned}
\left\langle\hat{E}^{2}\right\rangle & =-\frac{\hbar \omega}{2 \epsilon_{0}}(\bar{n} \exp (-2 i \omega t)+\bar{n} \exp (2 i \omega t)-2 \bar{n}-1) \\
\left\langle\hat{B}^{2}\right\rangle & =\frac{\hbar \omega \mu_{0}}{2}(\bar{n} \exp (-2 i \omega t)+\bar{n} \exp (2 i \omega t)+2 \bar{n}+1)
\end{aligned}
$$

Noting that

$$
\begin{aligned}
-4 \sin ^{2}(\omega t) & =\exp (-2 i \omega t)+\exp (2 i \omega t)-2 \\
4 \cos ^{2}(\omega t) & =\exp (-2 i \omega t)+\exp (2 i \omega t)+2
\end{aligned}
$$

we have

$$
\begin{aligned}
\left\langle\hat{E}^{2}\right\rangle & =-\frac{\hbar \omega}{2 \epsilon_{0}}\left(-4 \bar{n} \sin ^{2}(\omega t)-1\right) \\
\left\langle\hat{B}^{2}\right\rangle & =\frac{\hbar \omega \mu_{0}}{2}\left(4 \bar{n} \cos ^{2}(\omega t)+1\right)
\end{aligned}
$$

Rewrite as

$$
\begin{align*}
\frac{\epsilon_{0}}{2}\left\langle\hat{E}^{2}\right\rangle & =\hbar \omega\left(\bar{n} \sin ^{2}(\omega t)+\frac{1}{4}\right) \tag{1}\\
\frac{1}{2 \mu_{0}}\left\langle\hat{B}^{2}\right\rangle & =\hbar \omega\left(\bar{n} \cos ^{2}(\omega t)+\frac{1}{4}\right) \tag{2}
\end{align*}
$$

The total energy per unit volume is the sum of (1) and (2).

$$
U=\frac{\epsilon_{0}}{2}\left\langle\hat{E}^{2}\right\rangle+\frac{1}{2 \mu_{0}}\left\langle\hat{B}^{2}\right\rangle=\hbar \omega\left(\bar{n}+\frac{1}{2}\right)
$$

Check units.

$$
\hbar \omega=h \nu \propto \text { joule second } \times \frac{1}{\text { second }}=\text { joule }
$$

We will now show that

$$
\hat{a}|\Psi\rangle=\sqrt{\bar{n}} \exp (-i \omega t)|\Psi\rangle
$$

Let

$$
c_{n}=\sqrt{\frac{\bar{n}^{n} \exp (-\bar{n})}{n!}} \exp \left(-i\left(n+\frac{1}{2}\right) \omega t\right)
$$

It follows that

$$
c_{n}=\sqrt{\frac{\bar{n}}{n}} \exp (-i \omega t) c_{n-1}
$$

Hence

$$
\begin{equation*}
\hat{a}\left(c_{n}|n\rangle\right)=c_{n} \sqrt{n}|n-1\rangle=\sqrt{\bar{n}} \exp (-i \omega t) c_{n-1}|n-1\rangle \tag{3}
\end{equation*}
$$

Noting that $\hat{a}|0\rangle=0$ we can write the summation starting from $n=1$.

$$
\hat{a}|\Psi\rangle=\hat{a} \sum_{n=1}^{\infty} c_{n}|n\rangle
$$

By equation (3) we have

$$
\hat{a}|\Psi\rangle=\sqrt{\bar{n}} \exp (-i \omega t) \sum_{n=1}^{\infty} c_{n-1}|n-1\rangle=\sqrt{\bar{n}} \exp (-i \omega t)|\Psi\rangle
$$

