
Coherent state

Let |Ψ⟩ be the following “coherent” state where n̄ is the mean number of photons and |n⟩ is
the state with exactly n photons.

|Ψ⟩ =
∞∑
n=0

√
n̄n exp(−n̄)

n!
exp

(
−i

(
n+ 1

2

)
ωt
)
|n⟩

Let â be the following “lowering” operator.

â|n⟩ =
√
n|n− 1⟩

Apply operator â to coherent state |Ψ⟩ to obtain (see derivation below)

â|Ψ⟩ =
√
n̄ exp(−iωt)|Ψ⟩

and
⟨Ψ|â† = (â|Ψ⟩)† =

√
n̄ exp(iωt)⟨Ψ|

Let Ê be the following electric field operator.

Ê = i

√
ℏω
2ϵ0

(â− â†)

Note that Ê is Hermitian.
Ê = Ê†

Hermitian operators have real eigenvalues, hence Ê corresponds to an observable quantity.

The expected electric field is

⟨Ê⟩ = ⟨Ψ|Ê|Ψ⟩ = i

√
ℏω
2ϵ0

⟨Ψ|(â− â†)|Ψ⟩

By distributive law

⟨Ê⟩ = i

√
ℏω
2ϵ0

(
⟨Ψ|â|Ψ⟩ − ⟨Ψ|â†|Ψ⟩

)
Substitute eigenvalues for operators.

⟨Ê⟩ = i

√
ℏω
2ϵ0

(√
n̄ exp(−iωt)⟨Ψ|Ψ⟩ −

√
n̄ exp(iωt)⟨Ψ|Ψ⟩

)
By ⟨Ψ|Ψ⟩ = 1 we have

⟨Ê⟩ = i

√
ℏω
2ϵ0

(√
n̄ exp(−iωt)−

√
n̄ exp(iωt)

)
Recalling that

2 sin(ωt) = i exp(−iωt)− i exp(iωt)
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we have

⟨Ê⟩ =
√

2n̄ℏω
ϵ0

sin(ωt)

Let B̂ be the following magnetic field operator.

B̂ =

√
ℏωµ0

2
(â+ â†)

By deduction similar to that for ⟨Ê⟩ we obtain

⟨B̂⟩ =
√

2n̄ℏωµ0 cos(ωt)

The energy of an electromagnetic wave is

U =
ϵ0
2
|E|2 + 1

2µ0

|B|2

For linear polarization there exists a rotation matrix R such that

RE =

E
0
0

 , RB =

 0
B
0


Hence in the rotated frame

U =
ϵ0
2
E2 +

1

2µ0

B2

For a quantum field we have

U =
ϵ0
2
⟨Ê2⟩+ 1

2µ0

⟨B̂2⟩

where

⟨Ê2⟩ = ⟨Ψ|ÊÊ|Ψ⟩ = −ℏω
2ϵ0

⟨Ψ|(â− â†)(â− â†)|Ψ⟩

⟨B̂2⟩ = ⟨Ψ|B̂B̂|Ψ⟩ = ℏωµ0

2
⟨Ψ|(â+ â†)(â+ â†)|Ψ⟩

For the coherent state

⟨Ψ|ââ|Ψ⟩ =
(√

n̄ exp(−iωt)
)2

= n̄ exp(−2iωt)

⟨Ψ|â†â|Ψ⟩ =
(√

n̄ exp(iωt)
) (√

n̄ exp(−iωt)
)

= n̄

⟨Ψ|ââ†|Ψ⟩ = ⟨Ψ|(â†â+ 1)|Ψ⟩ = ⟨Ψ|a†â|Ψ⟩+ ⟨Ψ|Ψ⟩ = n̄+ 1

⟨Ψ|â†â†|Ψ⟩ =
(√

n̄ exp(iωt)
)2

= n̄ exp(2iωt)

The expectation n̄+ 1 for ââ† is from the commutator

ââ† − â†â = 1
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Using the expectation values derived above we now have

⟨Ê2⟩ = −ℏω
2ϵ0

(
n̄ exp(−2iωt) + n̄ exp(2iωt)− 2n̄− 1

)
⟨B̂2⟩ = ℏωµ0

2

(
n̄ exp(−2iωt) + n̄ exp(2iωt) + 2n̄+ 1

)
Noting that

−4 sin2(ωt) = exp(−2iωt) + exp(2iωt)− 2

4 cos2(ωt) = exp(−2iωt) + exp(2iωt) + 2

we have

⟨Ê2⟩ = −ℏω
2ϵ0

(
−4n̄ sin2(ωt)− 1

)
⟨B̂2⟩ = ℏωµ0

2

(
4n̄ cos2(ωt) + 1

)
Rewrite as

ϵ0
2
⟨Ê2⟩ = ℏω

(
n̄ sin2(ωt) + 1

4

)
(1)

1

2µ0

⟨B̂2⟩ = ℏω
(
n̄ cos2(ωt) + 1

4

)
(2)

The total energy per unit volume is the sum of (1) and (2).

U =
ϵ0
2
⟨Ê2⟩+ 1

2µ0

⟨B̂2⟩ = ℏω
(
n̄+ 1

2

)
Check units.

ℏω = hν ∝ joule second× 1

second
= joule

We will now show that
â|Ψ⟩ =

√
n̄ exp(−iωt)|Ψ⟩

Let

cn =

√
n̄n exp(−n̄)

n!
exp

(
−i

(
n+ 1

2

)
ωt
)

It follows that

cn =

√
n̄

n
exp(−iωt)cn−1

Hence
â
(
cn|n⟩

)
= cn

√
n|n− 1⟩ =

√
n̄ exp(−iωt)cn−1|n− 1⟩ (3)

Noting that â|0⟩ = 0 we can write the summation starting from n = 1.

â|Ψ⟩ = â
∞∑
n=1

cn|n⟩

By equation (3) we have

â|Ψ⟩ =
√
n̄ exp(−iωt)

∞∑
n=1

cn−1|n− 1⟩ =
√
n̄ exp(−iωt)|Ψ⟩
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