-- E is total energy E = hbar^2 / (2 me a0^2) - e^2 / (4 pi epsilon0 a0) dE = d(E,a0) dE -- Bohr radius minimizes total energy a0 = 4 pi epsilon0 hbar^2 / (e^2 me) "Bohr radius" a0 "Verify that energy is minimized for Bohr radius" check(dE == 0) "ok" -- base units ampere = "ampere" kilogram = "kilogram" meter = "meter" second = "second" -- derived units coulomb = ampere second farad = ampere^2 kilogram^(-1) meter^(-2) second^4 joule = kilogram meter^2 second^(-2) volt = ampere^(-1) kilogram meter^2 second^(-3) -- physical constants c = 299792458.0 meter / second -- speed of light (exact) h = 6.62607015 10^(-34) joule second -- Planck constant (exact) hbar = h / float(2 pi) -- reduced Planck constant e = 1.602176634 10^(-19) coulomb -- elementary charge (exact) eV = 1.602176634 10^(-19) joule / "eV" -- electron volt (exact) k = 1.380649 10^(-23) joule / kelvin -- Boltzmann constant (exact) me = 9.1093837015 10^(-31) kilogram -- electron mass epsilon0 = 8.8541878128 10^(-12) farad / meter -- vacuum electric permittivity pi = float(pi) -- use numerical value of pi "Numerical value for Bohr radius" a0 "Numerical value for Rydberg unit of energy" -E / eV
Run