-- Compute R-squared for Bhabha scattering data from SLAC-PUB-1501 (SLAC SPEAR) N = 12 -- number of observations -- x is cos(theta) x = ( 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, -0.1, -0.2, -0.3, -0.4, -0.5, -0.6) -- y is count data y = ( 4432, 2841, 2045, 1420, 1136, 852, 656, 625, 511, 455, 402, 398) -- I is integral of probability density function I = 16 / (cos(theta) - 1) - 1/3 cos(theta)^3 - cos(theta)^2 - 9 cos(theta) - 16 log(1 - cos(theta)) theta1 = arccos(x[1]) theta2 = arccos(x[13]) -- F is cumulative distribution function F = (I - eval(I,theta,theta1)) / (eval(I,theta,theta2) - eval(I,theta,theta1)) -- probability per bin P = zero(N) for(k,1,N, theta1 = arccos(x[k]), theta2 = arccos(x[k + 1]), P[k] = eval(F,theta,theta2) - eval(F,theta,theta1) ) "Predicted values" yhat = sum(y) P yhat "Coefficient of determination (R squared)" ybar = sum(y) / N RSS = sum((y - yhat)^2) -- residual sum of squares TSS = sum((y - ybar)^2) -- total sum of squares 1 - RSS / TSS
Run