Bell's theorem

The key to understanding Bell's theorem is the following property of independent random variables. If two random variables A and B are independent (uncorrelated) then

$$
\langle A\rangle\langle B\rangle=\langle A B\rangle
$$

Consider two machines A and B that measure spin. Each machine can be set in one of two orientations labeled 0 and 1. Assuming the measurements are uncorrelated we have the following table of expectation values and a clever formula.

$\left\langle A_{0}\right\rangle$	$\left\langle A_{1}\right\rangle$	$\left\langle B_{0}\right\rangle$	$\left\langle B_{1}\right\rangle$	$\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle$
1	1	1	1	2
1	1	1	-1	2
1	1	-1	1	-2
1	1	-1	-1	-2
1	-1	1	1	2
1	-1	1	-1	-2
1	-1	-1	1	2
1	-1	-1	-1	-2
-1	1	1	1	-2
-1	1	1	-1	2
-1	1	-1	1	-2
-1	1	-1	-1	2
-1	-1	1	1	-2
-1	-1	1	-1	-2
-1	-1	-1	1	2
-1	-1	-1	-1	2

Since spin expectation values are all in the range -1 to +1 we have

$$
\begin{equation*}
-2 \leq\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle \leq 2 \tag{1}
\end{equation*}
$$

Now suppose a third machine generates two spins in the following entangled state.

$$
|s\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)
$$

One spin is sent to A and the other is sent to B.
Let

$$
A_{0}=\sigma_{z}, \quad A_{1}=\sigma_{x}, \quad B_{0}=-\frac{\sigma_{x}+\sigma_{z}}{\sqrt{2}}, \quad B_{1}=\frac{\sigma_{x}-\sigma_{z}}{\sqrt{2}}
$$

Then for the entangled state $|s\rangle$ we have

$$
\left\langle A_{0} B_{0}\right\rangle=\frac{1}{\sqrt{2}}, \quad\left\langle A_{0} B_{1}\right\rangle=\frac{1}{\sqrt{2}}, \quad\left\langle A_{1} B_{0}\right\rangle=\frac{1}{\sqrt{2}}, \quad\left\langle A_{1} B_{1}\right\rangle=-\frac{1}{\sqrt{2}}
$$

Hence

$$
\begin{equation*}
\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle=2 \sqrt{2} \tag{2}
\end{equation*}
$$

The result in (2) conflicts with (1) because for an entangled state the random variables are not independent. Any theory that asserts A and B are independent is constrained by (1) and falsified by (2). Hence Bell's theorem: No local theory can explain quantum mechanics. (A local theory has A and B independent.)

Exercises

1. Verify equation (2).
2. Verify that for the singlet state $|s\rangle$ given above we have

$$
\left\langle A_{0}\right\rangle=0, \quad\left\langle A_{1}\right\rangle=0, \quad\left\langle B_{0}\right\rangle=0, \quad\left\langle B_{1}\right\rangle=0
$$

Hence $\langle A\rangle\langle B\rangle \neq\langle A B\rangle$ for the singlet state.
3. There are three additional entangled states.

$$
\left|s_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right), \quad\left|s_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right), \quad\left|s_{3}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)
$$

Verify that A and B are correlated for all entangled states.

