Bell’s theorem

The key to understanding Bell’s theorem is the following property of independent random
variables. If two random variables A and B are independent then

(A)(B) = (AB)

Consider two machines A and B that measure spin. Each machine can be set in one of
two orientations labeled 0 and 1. Assuming the measurements are independent we have the
following table of expectation values.

(Ao) (A1) (Bo) (B1) (AoBo) + (AoB1) + (A1 Bo) — (A1 By)

1 1 1 1 2
1 1 1 -1 2
1 1 -1 1 -2
1 1 -1 -1 -2
1 -1 1 1 2
1 —1 1 -1 -2
1 —1 -1 1 2
1 —1 -1 -1 -2
-1 1 1 1 —2
-1 1 1 -1 2
-1 1 -1 1 -2
-1 1 -1 -1 2
-1 —1 1 1 -2
-1 —1 1 -1 -2
—1 —1 -1 1 2
-1 -1 -1 -1 2

Since spin expectation values are all in the range —1 to +1 we have
—2 < (AoBy) + (AoB1) + (A1By) — (A1By) <2 (1)

Now suppose a third machine generates two spins in the following entangled state.
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One spin is sent to A and the other is sent to B.
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Then for the entangled state |s) we have
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Hence

(AoBo) + (AoB1) + (A1Bo) — (A1By) = 2v2 (2)

The result in (2) conflicts with (1) because for an entangled state the random variables are
not independent. Any theory that asserts A and B are independent is constrained by (1)
and falsified by (2). Hence Bell’s theorem: No local theory can explain quantum mechanics.
(A local theory asserts that A and B are independent.)

Exercises
1. Verify equation (2).
2. Verify that for the singlet state |s) given above we have
(Ag) =0, (A1) =0, (By) =0, (B1)=0.
Hence (A)(B) # (AB) for the singlet state.

3. There are three additional entangled states.
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Verify that A and B are correlated for all entangled states.



