

Angular momentum 3

In this section we will derive the eigenvalues of L^2 and L_z from the commutators

$$\begin{aligned}[L_x, L_y] &= i\hbar L_z \\ [L_y, L_z] &= i\hbar L_x \\ [L_z, L_x] &= i\hbar L_y\end{aligned}$$

and

$$[L^2, L_x] = [L^2, L_y] = [L^2, L_z] = 0$$

Start by defining ladder operators L_+ and L_- .

$$\begin{aligned}L_+ &= L_x + iL_y \\ L_- &= L_x - iL_y\end{aligned}$$

We have the following commutation relations for ladder operators.

$$\begin{aligned}[L_z, L_+] &= [L_z, L_x] + i[L_z, L_y] \\ &= i\hbar L_y + i(-i\hbar L_x) \\ &= \hbar L_+ \\ [L_z, L_-] &= [L_z, L_x] - i[L_z, L_y] \\ &= i\hbar L_y - i(-i\hbar L_x) \\ &= -\hbar L_-\end{aligned}$$

We also have

$$\begin{aligned}L_- L_+ &= (L_x - iL_y)(L_x + iL_y) \\ &= L_x^2 + L_y^2 + i[L_x, L_y] \\ &= L^2 - L_z^2 - \hbar L_z \\ L_+ L_- &= (L_x + iL_y)(L_x - iL_y) \\ &= L_x^2 + L_y^2 - i[L_x, L_y] \\ &= L^2 - L_z^2 + \hbar L_z\end{aligned}$$

Operators L^2 and L_z commute hence they share eigenfunctions ψ .

Let λ be an eigenvalue of L^2 and let μ be an eigenvalue of L_z such that

$$L^2\psi = \lambda\psi$$

and

$$L_z\psi = \mu\psi$$

We will now show that

$$\lambda \geq \mu^2$$

By definition of L^2 we have

$$L^2\psi = (L_x^2 + L_y^2 + L_z^2)\psi$$

Substitute λ for L^2 and μ for L_z to obtain

$$\lambda\psi = (L_x^2 + L_y^2 + \mu^2)\psi$$

Rewrite as

$$(L_x^2 + L_y^2)\psi = (\lambda - \mu^2)\psi$$

The eigenvalues of squared Hermitian operators are nonnegative hence $\lambda - \mu^2 \geq 0$. Hence

$$\lambda \geq \mu^2$$

The property $\lambda \geq \mu^2$ means that μ has an upper limit.

Let μ_m be the maximum μ . Then for eigenfunction ψ_m we have

$$L_z\psi_m = \mu_m\psi_m$$

Apply L_+ to both sides.

$$L_+L_z\psi_m = \mu_mL_+\psi_m$$

Expand the left hand side.

$$(L_zL_+ - L_zL_+ + L_+L_z)\psi_m = \mu_mL_+\psi_m$$

Substitute $\hbar L_+$ for $[L_z, L_+]$.

$$L_zL_+\psi_m - \hbar L_+\psi_m = \mu_mL_+\psi_m$$

Hence

$$L_zL_+\psi_m = (\mu_m + \hbar)L_+\psi_m$$

Because μ_m is the maximum eigenvalue and $\mu_m + \hbar > \mu_m$ we must have

$$L_+\psi_m = 0$$

Consequently

$$L_-L_+\psi_m = 0$$

Recalling that

$$L_-L_+ = L^2 - L_z^2 - \hbar L_z$$

we have

$$(L^2 - L_z^2 - \hbar L_z)\psi_m = (\lambda - \mu_m^2 - \hbar\mu_m)\psi_m = 0$$

Hence

$$\lambda = \mu_m^2 + \hbar\mu_m \tag{1}$$

Let μ_k be the minimum μ . Then for eigenfunction ψ_k we have

$$L_z\psi_k = \mu_k\psi_k$$

Apply L_- to both sides.

$$L_- L_z \psi_k = \mu_k L_- \psi_k$$

Expand the left hand side.

$$(L_z L_- - L_z L_- + L_- L_z) \psi_k = \mu_m L_- \psi_k$$

Substitute $-\hbar L_-$ for $[L_z, L_-]$.

$$L_z L_- \psi_k + \hbar L_- \psi_k = \mu_k L_- \psi_k$$

Hence

$$L_z L_- \psi_k = (\mu_k - \hbar) L_- \psi_k$$

Because μ_k is the minimum eigenvalue and $\mu_k - \hbar < \mu_k$ we must have

$$L_- \psi_k = 0$$

Consequently

$$L_+ L_- \psi_k = 0$$

Recalling that

$$L_+ L_- = L^2 - L_z^2 + \hbar L_z$$

we have

$$(L^2 - L_z^2 + \hbar L_z) \psi_k = (\lambda - \mu_k^2 + \hbar \mu_k) \psi_k = 0$$

Hence

$$\lambda = \mu_k^2 - \hbar \mu_k \tag{2}$$

By equivalence of (1) and (2) we have

$$\mu_m^2 + \hbar \mu_m - \mu_k^2 + \hbar \mu_k = 0 \tag{3}$$

By ladder operators there is an integer n such that

$$\mu_m = \mu_k + n\hbar$$

Substitute $\mu_k + n\hbar$ for μ_m in (3) to obtain

$$\mu_k^2 + 2\mu_k n\hbar + n^2 \hbar^2 + \hbar \mu_k + n\hbar^2 - \mu_k^2 + \hbar \mu_k = 0$$

Cancel μ_k^2 and rewrite the remaining terms as

$$2\mu_k(n+1)\hbar + n(n+1)\hbar^2 = 0$$

Divide through by $(n+1)\hbar$ to obtain

$$2\mu_k + n\hbar = 0$$

Hence

$$\mu_k = -\frac{n\hbar}{2}$$

and

$$\mu_m = \mu_k + n\hbar = \frac{n\hbar}{2}$$

Define quantum number l as

$$l = \frac{n}{2} = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$$

Then

$$\mu_m = l\hbar$$

By equation (1) we have

$$\lambda = \mu_m^2 + \mu_m\hbar = (l\hbar)^2 + l\hbar^2 = l(l+1)\hbar^2$$

Hence $l(l+1)\hbar^2$ are eigenvalues of L^2 .

$$L^2\psi = \lambda\psi = l(l+1)\hbar^2\psi$$

For a given l , operator L_z has eigenvalues

$$\mu = \mu_k, \dots, \mu_m = -l\hbar, (-l+1)\hbar, \dots, (l-1)\hbar, l\hbar$$

Define quantum number m as

$$m = -l, -l+1, \dots, l-1, l$$

Then

$$\mu = m\hbar$$

Hence $m\hbar$ are eigenvalues of L_z .

$$L_z\psi = \mu\psi = m\hbar\psi$$

Eigenmath script