Angular momentum 2

The cross product in L = r X p demands rectangular coordinates. Hence for a wavefunction
1 in spherical coordinates, vectors r and p must be transformed in L.

Vector r transforms as
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To transform p we have by the chain rule
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Using the transformed coordinates
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we have in spherical coordinates
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https://georgeweigt.github.io/examples/angular-momentum-3-demo.html

Note

The following construction is from “Introduction to Quantum Mechanics” by Griffiths.

Noting that in spherical coordinates
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and
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we have for angular momentum L
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In rectangular coordinates
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Hence for the cross products
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Angular momentum L now reduces to
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Substitute for the basis vectors.
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In component form
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